Методы изучения генетики человека. Методы генетики Цитогенетический метод исследования генетики человека

Цитогенетический метод изучения наследственности человека представляет собой микроскопический анализ хромосом. Он стал широко применяться с начала 20-х годов 20-го столетия. С помощью метода осуществляется исследование морфологии человеческих хромосом и их подсчет. Его также используют для культивирования лейкоцитов, чтобы получить метафазные пластинки. Далее рассмотрим подробнее, что собой представляет цитогенетический метод изучения наследственности человека.

Общие сведения

Цитогенетический метод исследования генетики человека, его развитие и становление связаны с такими учеными, как Леван и Тио. Они в 1956 году первыми установили точное количество хромосом у людей. Их оказалось не 48, как думали ранее, а 46. Именно это и положило начало исследованию мейотических и митотических хромосом человека. В 1959-м году французскими учеными Готье, Тюрпеном и Леженом была установлена природа синдрома Дауна. Используя цитогенетический метод, они выявили, что болезнь имеет хромосомную этиологию. В последующие годы было описано еще множество патологий, часто встречающихся у людей и имеющих ту же природу. Сегодня цитогенетический метод изучения наследственности используется при диагностировании, составлении хромосомных карт, анализа мутационного процесса и решения прочих важных проблем. В 1960 году в США была разработана 1 Международная классификация. В основе нее использовались размеры хромосом, а также расположение центромеры - первичной перетяжки.

Анализ кариотипа

Оценка и выявление аномалий проводится в несколько приемов. Для выполнения анализа необходим фрагмент периферической крови больного объемом около 1-2 литров. Этапы цитогенетического метода при анализе кариотипа следующие:

  • Культивирование лимфоцитов.
  • Окраска.
  • Микроскопический анализ.

Культивирование лимфоцитов

Эта процедура необходима для стимулирования их деления. Это связано с тем, что возможности цитогенетического метода напрямую зависят от количества клеток, которые находятся на стадии метафазы, в тот момент когда хромосомы собраны наиболее компактно. Длительность культивирования, как правило, 72 часа. Увеличению числа метафазных клеток способствует введение в завершении процесса колхицина. Он приостанавливает на стадии метафазы деление, разрушает его веретено и повышает конденсацию хромосом. Затем клетки перемещаются в гипотонический раствор. Он провоцирует разрыв ядерной оболочки и свободное движение хромосом в цитоплазме.

Окрашивание

На этой стадии процесса клетки фиксируются с помощью уксусной к-ты и этанола в пропорции 1:3. Далее суспензию помещают на предметные стекла и сушат. В соответствии с целями анализа применяются разные приемы дифференциального окрашивания. Длительность процедуры - несколько минут. Окрашивание приводит к возникновению рисунка с поперечной исчерченностью, специфичного для каждой из хромосом.

Микроскопический анализ

Самым трудоемким процессом считается световое микроскопирование. Для его выполнения необходима высокая квалификация специалиста. Чтобы выявить хромосомные аномалии, следует проанализировать не меньше 30-ти пластинок. Весьма результативными считаются компьютерные методы исследования.

Разрешающая способность

Молекулярно-цитогенетический метод может применяться для анализа хромосом, отдельные сегменты которых могут иметь разную окраску. При этом кариотипы в целом похожи на красочные фантастические удивительные картины. Внедрены и активно применяются методы, с помощью которых осуществляется окрашивание хромосом в состоянии покоя, когда они максимально растянуты. Использование таких приемов позволяет идентифицировать сегменты, размер которых порядка 50 килобаз.

Развитие отрасли

В течение последних нескольких лет отмечается достаточно активный сдвиг в становлении области молекулярной биологии. Это прежде всего обуславливается работами по расшифровке генома людей, выполненными в рамках государственных и международных программ "Совокупность человеческих генов". В результате трудов были не только получены обширные по своему объему сведения по строению дезоксирибонуклеиновой кислоты. Были также проведены исследования современных технологий анализа, способов обработки больших объемов информации, созданы и сохранены информационные базы данных. На основании этих материалов сформировалось новое направление - молекулярная генетика. Она позволила обнаружить многочисленные специфичности в функциях хромосомного набора. Цитогенетический метод изучения используется для выявления новых элементов и звеньев, осуществления дешифровки мутации при наличии солидного числа врожденных заболеваний.

Специализированные области

Как видно, цитогенетический метод позволил решить существенные проблемы. В связи с этим стали появляться специализированные направления. В частности, сформировались такие области, как функциональная молекулярная генетика, врачебная, этническая геномика (этногеномика), сравнительная наука, исследующая гены и геномы живых существ и прочие.

Этногеномика

Основной ее задачей является анализ генетического многообразия в разнообразии генов отдельных территориальных общностей, наций, групп. В данном случае необходимо подчеркнуть принципиально важную идею. Благодаря этногеномике генетическая хромосомная механика стала влиять не только на имеющие определенное родство виды науки о терапии и жизнедеятельности, но и на достаточно отчужденные области, как, например, история.

Вариабельность

В процессе декодирования хромосомного набора, в то время как уже выявлены главные особенности в его конструкции, ученым стала ясна серьезность многообразия генома. Анализ вариабельности позволяет решить разнообразные проблемы, как практического, так и теоретического характера. Особое значение цитогенетический метод имеет при оценке развития человечества, принимая во внимание происхождение, цикл перемещения, формирование, родство и взаимодействие разных видов.

Анализ ДНК

Исследования дезоксирибонуклеиновой кислоты людей, населяющих планету сегодня, позволяют получить информацию о достаточно отдаленных явлениях и хронологических фактах, даже до самого момента появления человека. Так, к примеру, было выявлено, что в дезоксирибонуклеиновой кислоте вписано множество событий. Чтобы интерпретировать результаты этих исследований, необходимо рассматривать ДНК разных представителей всех общин, определяя степень и хромосомного родства.

Патологии

Причины многих заболеваний, к примеру, синдром Шерешевского-Тернера, Клайнфельтера, Дауна и прочих, долгое время оставались невыясненными. Но использование цитологического метода позволило обнаружить аномалии хромосом. Мужчины, страдающие синдромом Клайнфельтера, отличаются недоразвитостью гонад, умственной отсталостью, дегенерацией семенных канальцев, непропорциональностью конечностей и прочим. У женщин диагностируется болезнь Шерешевского-Тернера. Синдром проявляется в отсутствии менструаций и позднем половом созревании, недоразвитости гонад, небольшом росте, бесплодии и прочих признаках. В результате исследований было выявлено нерасхождение половых хромосом в процессе формирования родительских гамет. Дальнейший анализ показал, что следствием этого являются различные аномалии. Отмечается, в частности, полисомия. Например, мужчины могут иметь набор XX Y, XXX Y, ХХХХ Y, женщины же - XXX, ХХХХ. Существует особенность значения половых хромосом при детерминации человеческого пола при их нерасхождении. Так, в отличие от дрозофилы, она проявляется в том, что XX Y определяет исключительно мужской, а Х0 - женский пол. Вместе с этим увеличение количества хромосом Х при сочетании с одной Y только усиливает болезнь Клайнфельтера. Полисомия либо трисомия у женщин также является провоцирующим фактором для развития патологий, сходных с синдромом Шерешевского-Тернера.

В заключение

Патологии, спровоцированные нарушениями в нормальном количестве половых хромосом, обнаруживаются анализом хроматина. При нормальном наборе у мужчин он в клетках не обнаруживается. У здоровых женщин хроматин выявляется в виде 1 тельца. На фоне полисмии у женщин и мужчин число телец хроматина всегда меньше количества хромосом Х на единицу. Для каждой такой зиготы генетическая активность присутствует только у одного структурного элемента. Остальные же хромосомы Х в виде полового хроматина принимают гетеропикнотическое состояние. Причины данной закономерности сегодня выявлены не до конца. Тем не менее предполагается, что она обуславливается нивелированием активности генов в половых хромосомах гомо- и гетерогаметного пола. Кроме описанных выше, патологии могут возникать вследствие нерасхождения аутосом, а также благодаря разнообразным перестройкам типа делеций, транслокаций и прочих. С хромосомными аномалиями врожденного типа связано множество болезней. Именно поэтому цитогенетический метод имеет особое значение в их выявлении.

Урок изучения нового материала по теме «Методы изучения генетики человека. Наследственные болезни человека» (с использованием презентации)

Учитель биологии Колбасина Елена Федоровна

МОУ СОШ№3 г.Южноуральск

Цель : Рассмотреть особенности изучения генетики человека, сформировать знания об основных методах её изучения; познакомиться с методикой составления и анализа родословных

Расширить и углубить знания по генетике, используя информацию отсутствующую в учебнике и необходимую в жизни.

Определять типы наследования, решать задачи на законы генетики

Самостоятельно искать новую информацию, используя Интернет-ресурсы и дополнительную литературу.

Анализировать информацию, обобщать и сопоставлять различные источники, интегрировать знания

Оборудование : презентация «Методы изучения генетики человека. Наследственные болезни человека».

Ход урока:

I. Изучение нового материала с помощью электронной презентации (объяснение учителя Слайды1-11)

У человека более 2000 наследственных болезней. Законы Менделя применимы к человеку. Однако при изучении генетики человека возникают определенные трудности, вызванные:

Невозможностью использования экспериментального скрещивания;

Редкой сменой поколений;

Малочисленным потомством;

Поздним половым созреванием.

Большое число хромосом

Слабое изучение хромосом

Поэтому для изучения генетики человека используют ряд методов:

1. Цитогенетический метод основан на макроскопическом исследовании кариотипа. О н сводится к изучению структуры и числа хромосом; выявлению хромосомных аберраций; составлению генетических карт хромосом.

С помощью цитогенетического метода выявлена группа болезней, связанных либо с изменением числа хромосом, либо с изменениями их структуры. Такие болезни получили название хромосомных . Чаще всего хромосомные болезни являются результатом мутаций, произошедших в половых клетках одного из родителей во время мейоза.

К числу хромосомных болезней относятся один из видов лейкоза, синдром Дауна и другие.

Лейкоз (лейкемия) – форма рака крови, при котором происходит быстрый рост количества незрелых белых клеток крови (лейкоцитов). Они размножаются быстро и беспорядочно, образуя лишь недееспособные клетки, что приводит к ослаблению защитных свойств организма. Причиной лейкоза является утрата участка (делеция) 21-й хромосомы.

Синдром Дауна – одна из самых часто встречающихся хромосомных болезней. Она развивается в результате трисомии по 21 хромосоме (кариотип – 47). Частота этого синдрома среди новорожденных составляет 1:700-800, одинаково часто наблюдается у обоих полов. Болезнь легко диагностируется, так как имеет ряд характерных признаков: округлой формы голова с уплощенным затылком, лоб скошенный и узкий, узкие глазные щели с косым разрезом, типичная складка верхнего века (эпикант), плоское и широкое переносье, постоянно открытый рот. Для всех больных с этим синдромом характерна умственная отсталость, примерно в 50% случаев – различные пороки сердца. Достоверно установлено, что дети с синдромом Дауна чаще рождаются у пожилых родителей. Если возраст матери 35-46 лет, то вероятность рождения больного ребенка возрастает до 4,1%.

2. Близнецовый метод позволяет определить роль генотипа и среды в проявлении признаков.

Различают моно- и дизиготных близнецов. Монозиготные (однояйцовые) близнецы развиваются из одной оплодотворенной яйцеклетки. Монозиготные близнецы имеют совершенно одинаковый генотип, но могут отличаться по фенотипу, что обусловлено воздействием факторов внешней среды. Дизиготные (двуяйцовые) близнецы развиваются после оплодотворения сперматозоидами нескольких одновременно созревших яйцеклеток. Такие близнецы имеют разный генотип, и их фенотипические отличия обусловлены как генотипом, так и факторами внешней среды.

Монозиготные близнецы имеют большую степень сходства по признакам, которые определяются в основном генотипом. Например, они всегда однополы, у них одинаковые группы крови по разным системам (ABO, Rh, и др.), одинаковый цвет глаз, однотипные дерматоглифические узоры на пальцах и ладонях и др. Различия таких близнецов объясняются влиянием на них внешней среды, под которой понимают не только физические факторы, но и социальные условия.

3. Биохимические методы. В последние годы показано, что очень многие наследственные патологические состояния у человека связаны с нарушением обмена веществ. Известны аномалии углеводного, аминокислотного, липидного и других типов обмена.

4. Генеалогический метод изучения генетики человека – это составление и анализ родословных с целью установления:

  • наследственен ли данный признак или нет;
  • типа наследования признака или заболевания;
  • вероятности наследования признака в ряду поколений.

С помощью генеалогического метода устанавливают наследование индивидуальных особенностей человека: черт лица, роста, группы крови, умственного и психического склада, а также некоторых заболеваний в ряду последовательных поколений по отцовской и материнской линии.

В зависимости от локализации и свойств гена, определяющего развитие изучаемого признака, различают несколько типов наследования: аутосомное (когда ген расположен в одной из 22 пар аутосом – неполовых хромосом) и сцепленное с полом. Существует аутосомно-доминантный и аутосомно-рецессивный типы наследования: при аутосомно - доминантном наследовании признак, как правило, проявляется в каждом поколении; п ри аутосомно-рецессивном наследовании признак проявляется не в каждом поколении, в родственных браках проявляется чаще. Кроме того, различают Х-сцепленный и Y-сцепленный (голандрический) тип наследования, когда ген расположен соответственно в Х- или Y-хромосоме.

Генеалогия как наука о родословных имеет свою специальную терминологию. Для составления генеалогических деревьев используется определенная символика (Г.Юстон, 1931г.) (смотри слайд 5).

Известно, что сын последнего российского царя Николая II царевич Алексей страдал гемофилией. Поскольку это заболевание проявлялось в нескольких поколениях потомков английской королевы Виктории, гемофилию называют «царской» болезнью.

Рассмотрите фрагмент родословной королевы Виктории (Алиса Гессенская - ее дочь). У скольких людей болезнь проявилась? Почему она проявилась только у мужчин? Каков тип наследования данного заболевания?

II. Лабораторная работа « Генеалогический метод изучения генетики человека»

С детства ребенок слышит разговоры вокруг себя о каких-либо наследственных признаках и задатках, доставшихся ему от кого-либо из старших поколений семьи. Справедливы ли суждения близких? Кроме того, создание родословной – не только интересное занятие. Родословная может стать ценным медицинским документом для вас и ваших потомков, если придется обратиться в медико-генетическую консультацию. Поэтому следующая часть урока посвящена проведению лабораторной работы.

(При необходимости работа завершается дома, либо первое задание - сбор сведений о проявлении всех или части указанных в таблице признаков у всех родственников по прямой линии выполняется заранее)

Этапы генеалогического анализа:

1) сбор данных обо всех родственниках обследуемого (анамнез);

2) построение родословной;

3) анализ родословной (установление типа наследования) и выводы.

Для построения родословных применяются условные обозначения. При построении родословной необходимо соблюдать следующие правила:

  1. родословную начинают строить с пробанда;
  2. каждое поколение нумеруется римскими цифрами слева (допустимы обозначения Р, F 1 , F 2 и т.д.)
  3. символы, обозначающие особей одного поколения, располагаются на горизонтальной линии.

Установление типа наследования . Для этого используются принципы генетического анализа и различные статистические методы обработки данных многих родословных.

Аутосомно-доминантный тип наследования

1) признак проявляется в каждом поколении;

2) признаком обладает ребенок у родителей – обладателей признака;

4) проявление признака наблюдается по вертикали и по горизонтали;

5) вероятность наследования 100 % (если хотя бы один родитель гомозиготен), 75 % (если оба родителя гетерозиготны) и 50 % (если "один родитель гетерозиготен).

Аутосомно-рецессивный тип наследования характеризуется следующими признаками:

2) признаком обладает ребенок (гомозигота), рожденный от родителей (гетерозигот), не обладающих данным признаком;

3) признаком обладают в равной степени мужчины и женщины;

4) проявление признака наблюдается по горизонтали;

5) вероятность наследования 25 % (если оба родителя гетерозиготны), 50 % (если один родитель гетерозиготен, а второй гомозиготен по рецессивному признаку) и 100 % (если оба родителя рецессивные гомозиготы).

Х-сцепленный рецессивный тип наследования характеризуется следующими признаками:

1) признак проявляется не в каждом поколении;

2) признаком обладает ребенок, рожденный от родителей, не обладающих данным признаком;

3) признаком обладают преимущественно мужчины;

4) проявление признака (болезни) наблюдается преимущественно по горизонтали;

5) вероятность наследования - у 25 % всех детей, в том числе у 50 % мальчиков;

6) здоровые мужчины не передают болезни. Так наследуются у человека гемофилия, дальтонизм, умственная отсталость с ломкой Х-хромосомой, мышечная дистрофия Дюшенна, синдром Леша - Найхана и др.

Х - сцепленный доминантный тип наследования сходен с аутосомно-доминантным, за исключением того, что мужчина передает этот признак только дочерям (сыновья получают от отца Y-хромосому). Примером такого заболевания является особая форма рахита, устойчивая к лечению витамином D.

Голандрический тип наследования характеризуется следующими признаками:

1) признак проявляется во всех поколениях;

2) признаком обладают только мужчины;

3) у отца – обладателя признака все сыновья обладают данным признаком;

4) вероятность наследования у мальчиков 100 %.

Так наследуются у человека некоторые формы ихтиоза, обволошенность наружных слуховых проходов и средних фаланг пальцев, некоторые формы синдактилии (перепонки между пальцами ног) и др.

Наследственные болезни человека. (Презентация. Слайды 12-24)

Каковы же причины этих несчастий? Причины в наследственности. В популяции человека накапливаются мутации. Существует понятие « генетического груза» популяций человека. Ежегодно в мире рождается 5млн. детей с тяжелыми врожденными дефектами развития. Наследственные аномалии прослеживаются на протяжении многих поколений и даже веков.

(Слайды подготовлены уч-ся дома с использованием Интернет-ресурсы и доп. литературу)

Профилактика и лечение наследственных заболеваний.

Сводится к медико-генетическому консультированию, к уменьшению загрязнений окружающей среды, диетотерапии и заместительной терапии. Применяются хирургические методы при некоторых заболеваниях (заячья губа). Нежелательность родственных браков (браки между двоюродными братьями и сестрами). Родственные браки особенно нежелательны, когда имеется вероятность гетерозиготности супругов по одному и тому же рецессивному вредному гену. Следует знать, что курение и особенно употребление алкоголя матерью или отцом будущего ребенка резко повышает вероятность рождения младенца, пораженного тяжелыми недугами.(Слайды 25-26)

Домашнее задание: подготовиться к конференции по данной теме.

Подумайте: по мнению ученых, загадка гениальности- в редких наследственных болезнях, которые являются своеобразными «катализаторами» неординарных способностей. Можно ли согласиться с мнением ученых. (Используя дополнительную литературу, Интернет –ресурсы, приведите доказательства «за» или «против»)

Использованные источники:

  1. Медицинская генетика: Учебник/ Н.П.Бочков, А.Ю.Асанов, Н.А.Жученко и др.; Под ред. Н.П.Бочкова. – 2-е изд., стер. – М.: Издательский центр «Академия», 2003. – 192с.
  2. Наследственные синдромы и медико-генетическое консультирование. С.И.Козлова, . Е.Семанова и др. Справочник. Ленинград, «Медицина» 1987г.
  3. http://home-edu.ru/pages/shpit/rodoslovnaja/zanitie-1/zanitie-1.htm
  4. http://bio.1september.ru/article.php?ID=200200202
  5. http://baby.geiha.ru/data1/11.htm

- -

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него:

Основные методы изучения генетики человека:

Генеалогический;

Близнецовый;

Цитогенетический метод;

Популяционно-статистический метод;

Генеалогический метод основан на составлении родословной человека и изучении характера наследования признака. Это самый давний метод. Суть его состоит в установлении родословных связей и определении доминантных и рецессивных признаков и характера их наследования. Особенно эффективен этот метод при исследовании генных мутаций.

Метод включает два этапа: сбор сведений о семье за возможно большее число поколений и генеалогический анализ. Родословная составляется, как правило, по одному или нескольким признакам. Для этого собираются сведения о наследовании признака среди близких и дальних родственников.

Представителей одного поколения располагают в одном ряду в порядке их рождения.

Далее начинается второй этап – анализ родословной с целью установления характера наследования признака. В первую очередь устанавливается, как проявляется признак у представителей разных полов, т.е. сцепленность признака с полом. Далее определяется, является ли признак доминантным или рецессивным, сцеплен ли он с другими признаками и т.д. При рецессивном характере наследования признак проявляется у небольшого числа особей не во всех поколениях. Он может отсутствовать у родителей. При доминантном наследовании признак часто встречается практически во всех поколениях.

Характерной особенностью наследования признаков, сцепленных с полом, является их частое проявление у лиц одного пола. В случае, если этот признак доминантный, то он чаще встречается у женщин. Если признак рецессивный, то в этом случае он чаще проявляется у мужчин.

Анализ многочисленных родословных и характер распространения признака в обширной человеческой популяции помогли генетикам установить характер наследования многих нормальных признаков человека, таких как курчавость и цвет волос, цвет глаз, веснушчатость, строение мочки уха и т.д., а также такие аномалии, как дальтонизм, серповидно-клеточная анемия и др.

Таким образом, с помощью метода родословных устанавливается зависимость признака от генетического материала, тип наследования (доминантный, рецессивный, аутосомный, сцепленный с половыми хромосомами), наличие сцепления генов, зиготность (гомозиготность или гетерозиготность) членов семьи, вероятность наследования гена в поколениях, тип наследования признака. При аутосомно-доминантном наследовании (появление признака связано с доминантным геном) признак, как правило, проявляется в каждом поколении (наследование по горизонтали). При аутосомно-рецессивном наследовании признак проявляется редко, не в каждом поколении (наследование по вертикали), однако, в родственных браках больные дети рождаются чаще. При наследовании, сцепленном с полом, частота проявления признака у особей разного пола неодинакова.


Цитогенетический метод заключается в микроскопическом исследовании структуры хромосом и их количества у здоровых и больных людей. Из трех типов мутаций под микроскопом могут обнаруживаться лишь хромосомные и геномные мутации. Наиболее простым методом является экспресс-диагностика – исследование количества половых хромосом по Х-хроматину. В норме у женщин одна Х-хромосома в клетках находится в виде тельца хроматина, а у мужчин такое тельце отсутствует. При трисомии по половой паре у женщин наблюдаются два тельца, а у мужчин – одно. Для идентификации трисомии по другим парам исследуется кариотип соматических клеток и составляется идиограмма, которая сравнивается со стандартной.

Хромосомные мутации связаны с изменением числа или структуры хромосом. Из них под микроскопом при специальном окрашивании хорошо выявляются транслокации, делеции, инверсии. При транслокации или делеции хромосомы соответственно увеличиваются или уменьшаются в размере. А при инверсии меняется рисунок хромосомы (чередование полос).

Хромосомные мутации могут являться маркерами в цитогенетической методике исследования того или иного заболевания. Кроме того, этот метод используется для определения поглощенных людьми радиационных доз и в других научных исследованиях.

Популяционно-статистический метод дает возможность рассчитать в популяции частоту встречаемости нормальных и патологических генов, определить соотношение гетерозигот – носителей аномальных генов. С помощью данного метода определяется генетическая структура популяции (частоты генов и генотипов в популяциях человека); частоты фенотипов; исследуются факторы среды, изменяющие генетическую структуру популяции. В основе метода лежит закон Харди–Вайнберга, в соответствии с которым частоты генов и генотипов в многочисленных популяциях, обитающих в неизменных условиях, и при наличии панмиксии (свободных скрещиваний) на протяжении ряда поколений остаются постоянными. Вычисления производятся по формулам: р + q = 1, р2 + 2pq + q2 = 1. При этом р – частота доминантного гена (аллеля) в популяции, q – частота рецессивного гена (аллеля) в популяции, р2 – частота гомозигот доминантных, q2 – гомозигот рецессивных, 2pq – частота гетерозиготных организмов. Используя этот метод, можно также определять частоту носителей патологических генов.

Цитогенетический метод. Кариотип человека. Характеристика методов дифференциального окрашивания хромосом. Денверская и Парижская номенклатура. Классификация хромосом по соотношению длины плеч и расчет центромерного индекса.

Цитогенетический метод. Цитогенетический метод состоит в исследовании под микроскопом хромосомного набора клеток больного. Как известно, хромосомы находятся в клетке в спирализованном состоянии и их невозможно увидеть. Для того же, чтобы визуализировать хромосомы клетку стимулируют и вводят ее в митоз. В профазе митоза, а также в профазе и метафазе мейоза хромосомы деспирализуются и визуализируются.

В ходе визуализации оценивают количество хромосом, составляют идиограмму, в которой все хромосомы записывают в определенном порядке согласно Денверской классификации. На основании идиограммы можно говорить о наличии хромосомной абберации или изменении числа хромосом, а соответственно о наличии генетического заболевания.

Все методы дифференциальной окраски хромосом позволяют выявлять их структурную организацию, которая выражается в появлении поперечной исчерченности, разной в разных хромосомах, а также некоторых других деталей.

Дифференциальное окрашивание хромосом. Разработан ряд методов окрашивания (бэндинга), позволяющих выявить комплекс поперечных меток (полос, бэндов) на хромосоме. Каждая хромосома характеризуется специфическим комплексом полос. Гомологичные хромосомы окрашиваются идентично, за исключением полиморфных районов, где локализуются разные аллельные варианты генов. Аллельный полиморфизм характерен для многих генов и встречается в большинстве популяций. Выявление полиморфизмов на цитогенетическом уровне не имеет диагностического значения.

А. Q-окрашивание. Первый метод дифференциального окрашивания хромосом был разработан шведским цитологом Касперссоном, использовавшим с этой целью флюоресцентный краситель акрихин-иприт. Под люминесцентным микроскопом на хромосомах видны участки с неодинаковой интенсивностью флюоресценции - Q-сегменты. Метод лучше всего подходит для исследования Y-хромосом и потому используется для быстрого определения генетического пола, выявления транслокаций (обменов участками) между X- и Y-хромосомами или между Y-хромосомой и аутосомами, а также для просмотра большого числа клеток, когда необходимо выяснить, имеется ли у больного с мозаицизмом по половым хромосомам клон клеток, несущих Y-хромосому.

Б. G-окрашивание. После интенсивной предварительной обработки, часто с применением трипсина, хромосомы окрашивают красителем Гимзы. Под световым микроскопом на хромосомах видны светлые и темные полосы - G-сегменты. Хотя расположение Q-сегментов соответствует расположению G-сегментов, G-окрашивание оказалось более чувствительным и заняло место Q-окрашивания в качестве стандартного метода цитогенетического анализа. G-окрашивание дает наилучшие результаты при выявлении небольших аберраций и маркерных хромосом (сегментированных иначе, чем нормальные гомологичные хромосомы).

В. R-окрашивание дает картину, противоположную G-окрашиванию. Обычно используют краситель Гимзы или флюоресцентный краситель акридиновый оранжевый. Этим методом выявляют различия в окрашивании гомологичных G- или Q-негативных участков сестринских хроматид или гомологичных хромосом.

Г. C-окрашивание используют для анализа центромерных районов хромосом (эти районы содержат конститутивный гетерохроматин) и вариабельной, ярко флюоресцирующей дистальной части Y-хромосомы.

Д. T-окрашивание применяют для анализателомерных районов хромосом. Эту методику, а также окрашивание районов ядрышковых организаторов азотнокислым серебром (AgNOR-окрашивание) используют для уточнения результатов, полученных путем стандартного окрашивания хромосом.

Классификация и номенклатура равномерно окрашенных хромосом человека впервые были приняты на международном совещании в 1960 году в г. Денвере, в дальнейшем несколько измененные и дополненные (Лондон, 1963 и Чикаго, 1966). Согласно Денверовской классификации все хромосомы человека разделены на 7 групп, расположенных в порядке уменьшения их длины и с учетом центриольного индекса (отношение длины короткого плеча к длине всей хромосомы, выраженное в процентах). Группы обозначаются буквами английского алфавита от А до G. Все пары хромосом принято нумеровать арабскими цифрами

В начале 70-х годов XX века был разработан метод дифференциальной окраски хромосом, выявляющий характерную сегментацию, который позволил индивидуализировать каждую хромосому (рис. 58). Различные типы сегментов обозначают по методам, с помощью которых они выявляются наиболее отчетливо (Q-сегменты, G-сегменты, Т-сегменты, S-сегменты). Каждая хромосома человека содержит свойственную только ей последовательность полос, что позволяет идентифицировать каждую хромосому. Хромосомы спирализованы максимально в метафазе, менее спирализованы в профазе и прометафазе, что позволяет выделить большее число сегментов, чем в метафазе.

На метафазной хромосоме (рис. 59) приводятся символы, которыми принято обозначать короткое и длинное плечо, а также расположение районов и сегментов. В настоящее время существуют ДНК-маркеры или зонды, с помощью которых можно определить изменение определенного, даже очень маленького, сегмента в хромосомах (цитогенетические карты). На международном конгрессе генетики человека в Париже в 1971 г. (Парижская конференция по стандартизации и номенклатуре хромосом человека) была согласована система символов для более краткого и однозначного обозначения кариотипов.
При описании кариотипа:
указывается общее число хромосом и набор половых хромосом, между ними ставится запятая (46, XX; 46, XY);
отмечается какая хромосома лишняя или какой не хватает (это ука-зывается ее номером 5, 6 и др., или буквами данной группы А, В и др.); знаком «+» указывают на увеличение количества хромосом, знаком «-» указывают на отсутствие данной хромосомы 47, XY,+ 21;
плечо хромосомы, в котором произошло изменение (удлинение короткого плеча указывается символом (р+); укорочение (р-); удлинение длинного плеча указывается символом (q+); укорочение (q-);
символы перестроек (транслокация обозначается t, а делеция - del) помещают перед номерами вовлеченных хромосом, а перестроечные хромосомы заключают в скобки. Наличие двух структурно-аномальных хромосом обозначается точкой с запятой (;) или нормальной дробью (15/21).

Роль близнецового метода в исследовании наследственности и среды в формировании признаков. Виды близнецов. Проблема предрасположенности к заболеваниям. Факторы риска. Генеалогический метод (анализ родословного древа). Критерии определения типа наследования.

Близнецовый метод основан на изучении фенотипа и генотипа близнецов для определения степени влияния среды на развитие различных признаков. Среди близнецов выделяются однояйцевые и двуяйцевые.

Однояйцевые близнецы (идентичные) образуются из одной зиготы, разделившейся на ранней стадии дробления на две части. В этом случае одна оплодотворенная яйцеклетка дает начало не одному, а сразу двум зародышам. Они имеют одинаковый генетический материал, всегда одного пола, и наиболее интересны для изучения. Сходство у таких близнецов почти абсолютное. Мелкие различия могут объясняться влиянием условий развития.

Двуяйцевые близнецы (неидентичные) образуются из различных зигот, в результате оплодотворения двух яйцеклеток двумя сперматозоидами. Они похожи друг на друга не более чем родные братья или сестры, рожденные в разное время. Такие близнецы могут быть однополыми и разнополыми.

Близнецовый метод позволяет определить степень проявления признака у пары, влияние наследственности и среды на развитие признаков. Все различия, которые проявляются у однояйцевых близнецов, имеющих одинаковый генотип, связаны с влиянием внешних условий. Большой интерес представляют случаи, когда такая пара была по каким-то причинам разлучена в детстве и близнецы росли и воспитывались в разных условиях.

Изучение разнояйцевых близнецов позволяет проанализировать развитие разных генотипов в одинаковых условиях среды. Близнецовый метод позволил установить, что для многих заболеваний значительную роль играют условия среды, при которых происходит формирование фенотипа.

Например, такие признаки как группа крови, цвет глаз и волос определяются только генотипом и от среды не зависят. Некоторые заболевания, хотя и вызываются вирусами и бактериями, в некоторой степени зависят от наследственной предрасположенности. Такие заболевания, как гипертония и ревматизм, в значительной степени определяются внешними факторами и в меньшей степени – наследственностью.

Таким образом, близнецовый метод позволяет выявить роль генотипа и факторов среды в формировании признака, для чего изучаются и сравниваются степени сходства (конкордантность) и различий (дискордантность) монозиготных и дизиготных близнецов

Генеалогический метод заключается в анализе родословных и позволяет определить тип наследования (доминантный
рецессивный, аутосомный или сцепленный с полом) признака, а также его моногенность или полигенность. На основе полученных сведений прогнозируют вероятность проявления изучаемого признака в потомстве, что имеет большое значение для предупреждения наследственных заболеваний.

Генеалогический анализ является самым распространенным, наиболее простым и одновременно высоко информативным методом, доступным каждому, кто интересуется своей родословной и историей своей семьи

































Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели:

  • Образовательные :
    • объяснить причины невозможности применения к человеку экспериментальных методов генетики растений и животных;
    • изучить сущность и значение основных методов антропогенетики: генеалогического, близнецового, цитогенетического;
    • познакомить учащихся с новыми достижениями в области пренатальной и постнатальной диагностики наследственных болезней человека;
  • Воспитательные :
    • показать значение материальных основ наследственности и окружающей среды в формировании биологических особенностей и социальных черт личности человека;
    • определить единство биологических закономерностей для всей живой природы от микроорганизма до человека;
    • показать, как знание генетики помогает выяснить причины многих тяжелых заболеваний человека, своевременно ставить диагноз, находить меры профилактики и лечения;
  • Развивающие :
    • обеспечить развитие познавательных процессов учащихся в ходе решения проблемных вопросов и исследовательских задач;
    • продолжить развитие общеучебных умений и навыков: работать с дополнительной литературой, составлять доклады;
    • научить анализировать родословные, решать задачи с использованием формулы Хольцингера.

Оборудование: плакаты «Родословная с аутосомно-доминантным типом наследования», «Родословная с аутосомно-рецессивным типом наследования», «Родословная сцепленного с полом рецессивного типа наследования», «Родословная сцепленного с полом доминантного типа наследования», «Родословная голандрического типа наследования»; таблицы «Близнецовый метод», «Кариотип человека»; фотографии «Наследственные заболевания человека»; выставка книг по генетике человека; презентация.

Предварительная работа:

  • деление учащихся на группы;
  • подготовка каждой группой доклада по одной из тем: «Метод анализа родословных в генетических исследованиях человека», «Близнецовый метод изучения генетики человека. Близнецы», «Цитогенетический метод антропогенетики», «Экспресс-методы и методы пренатальной диагностики»;
  • подготовка каждой группой вопросов по предложенным темам.

ХОД УРОКА

I. Организационный момент

II. Актуализация (слайды 2, 3, 4)

– Изучением наследственности отдельных видов организмов занимается частная генетика. Частную генетику человека называют антропогенетикой. Установлено, что основные генетические закономерности являются общими для всех органических форм. Человек не является исключением. Социальная жизнь человека не свела на нет роль биологических факторов в его жизни, а, напротив, еще более их усложнила и разнообразила. Поэтому исследования в области антропогенетики встречают большие трудности.

– Какие методы изучения генетики растений и животных вы знаете? (Основным методом является гибридологический, который заключается в скрещивании организмов в ряду поколений с последующим изучением потомства. Также используются цитологический, биохимический и др.)

– Применимы ли к человеку методы экспериментальной генетики? (Нет, т.к. невозможно произвольное скрещивание, малое число потомков в каждой семье, поздняя половая зрелость, невозможность жизни потомков в контролируемых условиях)

– Таким образом, применимость к человеку классического генетического анализа как основного метода изучения наследственности и изменчивости исключена из-за невозможности экспериментальных скрещиваний, длительности времени достижения половой зрелости и малого количества потомства на пару. Не смотря на перечисленные трудности, генетика человека изучена на сегодня лучше, чем генетика многих других организмов, благодаря развитию медицины и разнообразным методам исследования.
Тема нашего урока «Методы изучения генетики человека».
Сегодня мы познакомимся с основными методами антропогенетики, их сущностью и значением в выявлении причин многих тяжелых заболеваний и определении мер их профилактики и лечения.

III. Изучение нового материала

1) Исторические данные

Накопление и систематизирование данных о закономерностях наследования некоторых признаков человека началось в XVIII-XIX веках, задолго до открытия Г. Менделем главных законов наследования и становления генетики как науки. Впервые хромосомы человека на цитологических препаратах были описаны в самом конце XIX века, еще до существования хромосомной теории. Тем не менее, многие данные были слишком противоречивы. Так, например, вплоть до середины XIX века по-разному оценивалось количество хромосом человека в кариотипе – от 47 до 49. Именно сейчас мы стоим на пороге познания тайн наследственности человека, единственного вида, обладающего разумом и способного целенаправленно изменять окружающий мир, т.к. новые достижения в области молекулярной генетики и генной инженерии позволяют изучать не только хромосомы, но и даже отдельные гены. Поэтому мы рассмотри методы, которые существуют достаточно давно:

  • генеалогический;
  • близнецовый;
  • цитогенетический.

И новые современные экспрес-методы и методы пренатальной диагностики.

2) Генеалогический метод(слайды 5, 6, 7, 8)

Первым исторически сложившимся методом изучения генетики человека является генеалогический метод, сущность которого заключается в анализе распределения каких-либо признаков среди представителей одной семьи в родословной. Еще в XVIII веке впервые была опубликована работа, посвященная анализу наследования полидактилии (шестипалости) в родословной одной семьи, включающей шесть поколений.
– Определим особенности генеалогического метода, его значение и возможности применения.

Доклад «Метод анализа родословных в генетических исследованиях человека» (дополнение «Архивы», «Анализ собственной родословной»). [Приложение 1 ]

Вопросы: (слайд 11)

– Как составить родословную?
– Кто готов проанализировать свою родословную?
– Почему при аутосомно-рецессивном типе наследования признак появляется в IV поколении?
– Почему при голандрическом типе наследования болеют только мужчины?

Вывод: Таким образом, самый древний из методов генетики человека – генеалогический – не исчерпал своих возможностей и в наше время. Он является основным в практике медико-генетического консультирования. С его помощью уточняется риск развития заболевания, вероятность носительства аномального гена. Зачастую при определении прогноза потомства другие сложные лабораторные методы дают значительно меньше информации. (Cлайд 12)

3) Близнецовый метод(слайды 13, 14, 15, 16)

Для решения многих теоретических проблем и практических медицинских задач, связанных с заболеваниями, требуется определить меру участия наследственности и среды в возникновении патологии. Особое значение в изучении сложно исследуемых признаков и заболеваний имеют генетически идентичные индивиды, которые встречаются в человеческих популяциях – близнецы.
– Определим значение близнецового метода в изучении величины наследуемости.

Доклад «Близнецовый метод изучения генетики человека» (дополнение «Близнецы»). [Приложение 2 ]

Вопросы: (слайд 17)

– Одинаков ли состав белков у двух монозиготных близнецов, если в их клетках не было мутаций?
– Почему у детей иногда появляются признаки несвойственные родителям?
– Почему монозиготные близнецы всегда одного пола, а дизиготные могут быть разного пола?
– Кто такой Гальтон? Почему он стал изучать генетику человека?
– Одинакова ли вероятность рождения близнецов у представителей разных рас?

Вывод: Итак, близнецовый метод позволяет дать первоначальную оценку генетической составляющей в фенотипической изменчивости какого-либо признака. Он применяется для изучения многих широко распространенных заболеваний (сердечно-сосудистых, желудочно-кишечных, психических, злокачественных опухолей и др.). Однако результаты близнецовых исследований являются достаточно неспецифичными и не позволяют определять точные механизмы влияния факторов внешней среды на формирование каких-либо признаков. Поэтому популярность этого метода в последнее время снизилась. (Cлайд 18)

4) Цитогенетический метод(слайды 19, 20, 21, 22)

На данный момент чаще используют цитогенетический метод. Это стало возможным благодаря применению методики культуры различных тканей и метода дифференциальной окраски хромосом. Использование этих методов позволяет точно учитывать аномалии хромосом.
– Определим основные этапы цитогенетического метода и условия его применения.

Доклад «Цитогенетический метод антропогенетики» (демонстрация фотографий наследственной патологии человека). [Приложение 3 ]

Вопросы: (слайд 23)

– Какие биологические материалы можно использовать для получения препаратов хромосом?
– Как изучают хромосомы лимфоцитов, если они не делятся митозом?
Что такое мутации?
– Какие мутации ведут к возникновению наследственной патологии?
– Какое заболевание у ребенка с представленным кариотипом? Каков его пол?

Вывод: Итак, цитогенетический метод основан на микроскопическом исследовании кариотипа. Позволяет выявить геномные и хромосомные мутации. (слайд 24)

5) Экспресс-методы и методы пренатальной диагностики(слайды 25, 26)

На пороге третьего тысячелетия произошел переход на генный уровень изучения болезней человека. Всего известно пять тысяч наследственных болезней, из них две тысячи – тяжелейшие расстройства. Значительные успехи достигнуты в изучении молекулярных причин наследственных болезней. Теперь стоит задача ранней диагностики заболеваний, чтобы провести своевременную профилактику или прервать беременность в случае тяжелой патологии будущего ребенка.
– Рассмотрим новые экспресс – методы и методы пренатальной диагностики.

Доклад «Экспресс-методы и методы пренатальной диагностики» [Приложение 4 ]

Вопросы: (слайд 27)

– Какие методы пренатальной диагностики наследственных заболеваний показаны всем беременным женщинам?
– Почему степень риска рождения детей с отклонениями от нормы значительно больше у алкоголиков, чем у непьющих родителей?
– Где расположено тельце Барра и как оно выглядит?
– Каковы показания для пренатальной диагностики?

Вывод: Информация о генетических особенностях каждого человека дает возможность еще до рождения ребенка предсказать, к каким наследственным заболеваниям будет предрасположен человек, какие меры профилактики и лечения могут быть приняты. (Cлайд 28)

IV. Закрепление

1) Беседа: (слайд 29)

– Каковы особенности человека как объекта генетических исследований?
– Какие методы применяются для изучения генетики человека?
– В чем суть и каковы возможности генеалогического метода?
– Чем прямые цитогенетические методы отличаются от непрямых?
– Почему внимательное наблюдение за проявлением признаков в ряду поколений может помочь изучать закономерности наследственности и изменчивости?
– Какое значение имеют генетические методы исследования наследственности человека для медицины и здравоохранения?
– Какие важнейшие проблемы решает в настоящее время медицинская генетика?

2) Решение задач:

А) Определите тип наследования по предложенным родословным. (Слайд 30)

Б)Конкордантность монозиготных близнецов по массе тела составляет 80%, а дизиготных – 30%. Каково соотношение наследственных и средовых факторов в формировании признака? (Слайд 31)

Вывод: Таким образом, невозможность применения гибридологического метода на фоне большого интереса к наследственности человека привело к разработке специальных методов изучения генетики человека. Это генеалогический, близнецовый, цитогенетический методы, экспресс-методы и методы пренатальной диагностики.
Они позволяют понять природу наследственных заболеваний, характер их наследования и выяснить вероятность появления в будущих поколениях наследственной патологии, а также быстрее диагностировать и раньше начать лечение больных.
Сейчас диагностируется более трехсот наследственных болезней и их число постоянно растет. В ряде стран, в том числе и в России, уже проводятся исследования, благодаря которым появляется возможность получить генетический паспорт – документ, в котором будут указаны существенные для здоровья и выбора профессии наследственные особенности.

V. Домашнее задание (слайд 32)

Конспект. Задачи:

    Конкордантность монозиготных близнецов по росту составляет 65%, а дизиготных – 34%. Каково соотношение наследственных и средовых факторов в формировании признака?

    Женщина имеет светлые волосы, ее ребенок также со светлыми волосами. Мать женщины светловолосая, две сестры и два брата – темноволосые. В семье брата – ребенок темноволосый. Составьте родословную. Определите, где возможно, гетерозиготность организмов.

Литература :

1. Биология для поступающих в вузы (способы решения задач по генетике)./ Составитель Н.М. Киреева. – Волгоград: «Учитель», 2000.
2. Заяц Р.Г., Бутиловский В.Э. Общая и медицинская генетика. Лекции и задачи. – Ростов-н/Д: Феникс, 2002.
3. Каменский А.А., Криксунов Е.А., Пасечник В.В. Общая биология 10-11 класс. – М.: Дрофа, 2009.
4. Лобашев М.Е., Ватти К.В. Генетика с основами селекции. – М.: Просвещение, 1979.
5. Медицинская генетика: Учебник / Н.П. Бочкова. М.: Высшая школа, 2001.
6. Тимолянова Е.К. Медицинская генетика. – Ростов-н/Д: Феникс, 2003.

Генетика человека изучает явления наследственности и изменчивости в популяциях людей, особенности наследования признаков в норме и их изменения под действием условий окружающей среды.

Человек как объект генетического анализа . Изучение генетики человека связано с большими трудностями:

  1. Невозможность экспериментирования.

Одно из первых условий гибридологического анализа у человека невыполнимо, поскольку экспериментальные браки у человека невозможны. Люди вступают в брак не преследуя никаких «экспериментальных» целей.

  1. Сложный кариотип - много хромосом и групп сцепления.

23 пары хромосом затрудняет генетическое и цитологическое картирование, что в свою очередь уменьшает возможности генетического анализа.

  1. Длительность смены поколений.

Для смены одного поколения нужно в среднем 30 лет. Следовательно, генетик не может наблюдать более одного двух поколений.

  1. Малое количество потомков.

Размер семьи в настоящее время настолько мал, что не позволяет вести анализ расщепления признаков в потомстве в пределах одной семьи.

  1. Невозможность создания одинаковых условий жизни.

Для человека понятие «среда» имеет более широкий характер, чем для животных и растений. Помимо таких факторов, как физические упражнения, питание, жилищные условия, климат, средой человека являются условия его социальной жизни, и она не поддается изменению по желанию генетика.

Основные методы исследования генетики человека

  1. I. Клинико-генеалогический метод

Генеалогия в широком смысле слова родословная - генеалогический метод - метод родословных. Он был введен конце XIX века Ф.Гальтоном и основан на построении родословных и прослеживание болезни (или признака) в семье или роду с указанием типа родственных связей между членами родословной. В настоящее время является наиболее универсальным и широко применяется при решении теоретических и прикладных проблем.

Метод позволяет установить

1) является ли данный признак наследственным

2) тип наследования и пенетрантность гена

3) предположить генотип лиц родословной

4) определить вероятность рождения ребенка с изучаемым заболеванием

5) интенсивность мутационного процесса

6) используется для составления генетических карт хромосом

Таким образом, цель генеалогического метода сводится к выяснению родственных связей и к прослеживанию признака или болезни среди близких и дальних, прямых и непрямых родственников. Технически он складывается из следующих этапов.

Этапы генеалогического анализа :

1) сбор данных о всех родственниках обследуемого (анамнез)

2) построение родословной

3) анализ родословной и выводы

Сложность сбора анамнеза заключается в том, что пробанд должен хорошо знать большинство своих родственников и состояние их здоровья. Пробанд - человек, обратившийся в медико-генетическую консультацию, в отношении которого строится родословная, и от которого получены сведения в отношении этой же болезни у родственников. Сибсы - братья и сестры пробанда.

Типы наследования:

1. Аутосомно-доминантный

1. больные в каждом поколении

2. больной ребенок у больных родителей

3. болеют в равной степени мужчины и женщины

4. наследование идет по вертикали и по горизонтали

5. вероятность наследования 100%, 75% и 50%.

Данные признаки будут проявляться только при полном доминировании, так наследуются у человека полидактилия, веснушки, курчавые волосы, карий цвет глаз и др. При неполном доминировании будет проявляться промежуточная форма наследования. При неполной пенетрантности гена, больные могут быть не в каждом поколении.

2. Аутосомно-рецессивный

  1. больные не в каждом поколении
  2. болеют в равной степени мужчины и женщины
  3. наследование идет преимущественно по горизонтали
  4. вероятность наследования 25, 50 и 100%

Чаще всего вероятность наследования болезни данного типа составляет 25%, так как вследствие тяжести заболевания больные либо не доживают до детородного возраста, либо не вступают в брак. Так наследуются фенилкетонурия, серповидно-клеточная анемия, голубой цвет глаз и т.д.

3. Х-сцепленный рецессивный тип наследования

  1. больные не в каждом поколении
  2. у здоровых родителей больной ребенок
  3. болеют преимущественно мужчины
  4. наследование идет в основном по горизонтали
  5. вероятность наследования 25% от всех детей и 50% у мальчиков

Примеры: гемофилия, дальтонизм, наследственная анемия, мышечная дистрофия и др.

4. Х-сцепленный с полом доминантный тип наследования сходен с аутосомно-доминантным, за исключением того, что мужчина передает этот признак всем дочерям

Пример: рахита, устойчивый к лечению витамином D, гипоплазия эмали зубов, фолликулярный гиперкератоз.

5. Голандрический

  1. больные во всех поколениях
  2. болеют только мужчины
  3. у больного отца больны все его сыновья
  4. вероятность наследования 100% у мальчиков.

Примеры: гипертрихоз ушной раковины, перепонки между вторым и третьим пальцами на ногах; ген, определяющий развитие семенников. Голандрические признаки не имеют существенного значения в наследственной патологии человека.

II . Цитогенетический метод

В настоящее время цитогенетический метод в генетике занимает существенное место. Применение данного метода позволяет изучить морфологическое строение отдельных хромосом и кариотипа в целом, определить генетический пол организма, а также диагностировать различные хромосомные болезни, связанные с нарушением числа хромосом или нарушением их структуры. Метод используется для изучения мутационного процесса и составления генетических карт хромосом. Наиболее часто метод используется в пренатальной диагностике хромосомных болезней.

Цитогенетический метод основан на микроскопическом изучении кариотипа и включает следующие этапы:

Культивирование клеток человека (чаще лимфоциты) на искусственных питательных средах

Стимуляция митозов фитогемагглютинином (ФГА)

Добавление колхицина (разрушает нити веретена деления) для остановки митоза на стадии метафазы

Обработка клеток гипотоническим раствором, вследствие чего хромосомы рассыпаются и лежат свободно

Окрашивание хромосом

Изучение под микроскопом (компьютерные программы).

Цитологические карты хромосом -

Генетические карты хромосом , т.е схемы описывающие порядок расположения генов и других генетических элементов в хромосоме с указанием расстояния между ними. Генетическое расстояние определяется по частоте рекомбинации между гомологичными хромосомами (расстояние между генами прямо пропорционально частоте кроссинговера) и выражается в сантиморганидах (сМ). Одна сантиморганида соответствует частоте рекомбинации, равной 1%.............. Такие генетические карты помимо инвентаризации генов отвечают на вопрос о вовлеченности генов в образование отдельных признаков организма.

Метод позволяет выявлять геномные (например, болезнь Дауна) и хромосомные (синдром кошачьего крика) мутации. Хромосомные аберрации обозначают номером хромосомы, короткого или длинного плеча и избытком (+) или нехваткой (-) генетического материала.

  1. III. Близнецовый метод

Метод заключается в изучении закономерностей наследования признаков в парах монозиготных и дизиготных близнецов. Он позволяет определить соотносительную роль наследственности (генотипа) и среды в проявлении различных признаков, как нормальных, так и патологических. Позволяет выявить наследственный характер признака, определить пенетрантность аллеля, оценить эффективность действия на организм некоторых внешних факторов (лекарственных препаратов, обучения, воспитания).

Суть метода заключается в сравнении проявления признака в разных группах близнецов при учете сходства или различия их генотипов

Различают моно- и дизиготных близнецов.

Монозиготные близнецы развиваются из одной оплодотворенной яйцеклетки. Они имеют совершенно одинаковый генотип, т.к. имеют 100% общих генов. И если они отличаются по фенотипу, то это обусловлено воздействием факторов внешней среды.

Дизиготные близнецы развиваются после оплодотворения сперматозоидами нескольких одновременно созревших яйцеклеток. Близнецы будут иметь разный генотип и их фенотипические различия будут обусловлены как генотипом, так и факторами внешней среды.

Процент сходства группы близнецов по изучаемому признаку называется конкордантностью, а процент различия дискордантностью. Так как монозиготные близнецы имеют одинаковый генотип, признак развивается у обоих близнецов, то конкордантность их выше, чем у дизиготных. Сравнение монозиготных близнецов, воспитывающихся в разных условиях, позволяет выявить признаки, в формировании которых существенная роль принадлежит факторам среды, по эти признакам между близнецами наблюдается дискордантность, т.е. различия.

Для оценки ли наследственности и среды в развитии того или иного признака используют формулу Хольцингера:

С МЗ - С ДЗ

Н = --------------------- х 100 Е = 100 - Н

Н - роль наследственности, Е - роль среды

По мере разработки теоретических основ близнецового метода постепенно сформировался особый раздел этих исследований - метод контроля по партнеру. Позволяет оценить лечебный эффект новых фармакологических средств при разных способах введения, исследовать фазы их действия, показать различия фармакокинетики новых и старых препаратов). Метод используется для предрасположенности к различным заболеваниям: ИБС, язвенная болезнь, ревматизм, инфекционные болезни, опухолей.

IV . Популяционно-статистический метод

С его помощью изучают наследственные признаки в больших группах населения, в одном или нескольких поколениях Он позволяет определять частоту встречаемости в популяции различных аллелей гена и разных генотипов по этим аллелям, выяснить распространение в ней различных наследственных признаков, в том числе заболеваний. Он позволяет изучать мутационный процесс, роль наследственности и среды в возникновении болезней, особенно с наследственной предрасположенностью. Существенным моментом использования этого метода является статистическая обработка полученных данных на основе закона генетического равновесия Харди - Вайнберга.

Математическим выражением закона служит формула (рА+qа) 2 где р и q частоты встречаемости аллелей А и а соответствующего гена. Раскрытие этой формулы дает возможность рассчитать частоту встречаемости людей с разным генотипом и в первую очередь гетерозигот - носителей скрытого рецессивного аллеля: р 2 АА + 2рq + q 2 аа.

Однако перед тем как говорить о практическом применении этих формул, следует отметить условия возникновения равновесия генотипов в популяциях:

1) Наличие панмиксии, т.е. случайный подбор супружеских пар

2) Отсутствие притока аллелей, вызываемого мутационным давлением

3) Отсутствие оттока аллелей, вызываемого отбором.

4) Равная плодовитость гетерозигот и гомозигот

5) Поколения не должны перекрываться во времени

6) Численность популяции должна быть достаточно большой.

Известные генетики отмечают, что хотя ни в одной конкретной популяции эта совокупность условий не может быть соблюдена, в большинстве случаев расчеты по закону Харди -Вайнберга настолько близки к действительности, что этот закон оказывается вполне пригодным для анализа генетической структуры популяций.

Пример……..

Например, гомозиготы по гену НbS в Беларуссии практически не встречаются, а в странах Западной Африки частота их варьирует от 25% в Камеруне до 40% в Танзании. Изучение распространения генов среди населения различных географических зон (геногеография) дает возможность установить центры происхождения различных этнических групп и их миграции, определить степень риска появления наследственных болезней у отдельных индивидуумов.

V . Метод дерматоглифики и пальмоскопии (дактилоскопии)

В 1892 г. был предложен Гальтонов в качестве одного из методов исследования генетики человека - Это метод изучения кожных гребешковых узоров пальцев и ладоней, а также сгибательных ладонных борозд. Указанные узоры являются индивидуальной характеристикой человека и не изменяются в течение его жизни, восстанавливаются после повреждений (ожогов).

Пример (Гальтон, Джоконда)

Сейчас установлено, что признак наследуется по полигенному типу и большое влияние на характер пальцевого и ладонного узоров оказывает мать через механизм цитоплазматической наследственности.

Метод нашел широкое применение в криминалистике, идентификации зиготности близнецов, установлении отцовства. Характерные изменения данных узоров наблюдаются при некоторых хромосомных болезнях (с-м Дауна, Клайнфельтера, Шер.-Тернера).

VI . Биохимические методы

Позволяет изучать наследственные заболевания, обусловленные генными мутациями - причины болезней обмена веществ (фенилкетонурия, серповидно-клеточная анемия). С помощью этого метода описано более 1000 врожденных болезней обмена веществ, для многих из них выявлен дефект первичного генного продукта. Наиболее распространенными среди этих заболеваний являются болезни связанные с дефектностью ферментов, структурных, транспортных или иных белков.

Метод основан на изучении активности ферментных систем: либо по активности самого фермента, либо по количеству конечных продуктов реакции, катализируемой данным ферментом.

Дефекты ферментов определяют путем определения содержания в крови и моче продуктов метаболизма, являющихся результатом функционирования данного белка. Дефицит конечного продукта, сопровождающийся накоплением промежуточных и побочных продуктов нарушенного метаболизма, свидетельствует о дефекте фермента или его дефиците в организме.

С помощью биохимических нагрузочных тестов можно выявлять гетерозиготных носителей патологических генов, например, фенилкетонурии. Обследуемому человеку вводят внутривенно определенное количество аминокислоты фенилаланина и через равные промежутки времени определяют его концентрацию в крови. Если человек гомозиготен по доминантному гену (АА), то концентрация фенилаланина в крови довольно быстро возвращается к контрольному уровню, а если он гетерозиготен (Аа), то снижение концентрации фенилаланина идет вдвое медленнее.

Аналогично проводятся тесты, выявляющие предрасположенность к сахарному диабету, гипертонии и другим болезням.

VII . Методы рекомбинантной ДНК

Позволяют анализировать фрагменты ДНК, находить и изолировать отдельные гены и сегменты генов и устанавливать в них последовательность нуклеотидов. К данному методу относиться метод клонирования ДНК. Термин «клонирование» означает, что ген клонирован, специальными приемами выделен, изучена его структура, клонирование гена означает также, что известен белок, синтез которого контролируется соответствующим геном. На основе клонированных генов создаются «геномные библиотеки» и международные банки данных, Любой специалист в мире может практически беспрепятственно войти в эти банки данных и воспользоваться для исследовательских целей собранной там информацией. Данные геномных библиотек широко используются при реализации программы «геном человека». (Коллекция фрагментов ДНК из всего генома)

Благодаря достигнутым успехам в рамках этой программы появилась возможность реально оценить функции генов в организме человека. Хотя более чем для четверти генов информация пока недоступна, для двух третей генов она или полностью установлена, или может быть примерно указана. Также была получена исключительно интересная информация о вовлеченности генов в образование и функционирование отдельных органов и тканей человеческого тела. Оказалось, что самое большое число генов необходимо для формирования мозга и поддержания его активности, а самое маленькое для создания эритроцитов - всего 8 генов. Эти сведения помогут разобраться в генетических программах развития и функционирования организма человека, в причинах возникновения раковых заболеваний и старения. Выявление молекулярных основ заболеваний поможет перевести на новый уровень методы их ранней диагностики, а значит, вести более утонченно и успешно борьбу с заболеваниями. Такие методы, как, например, адресная доставка лекарств к пораженным клетки, замещение больных генов здоровыми, и многие другие становятся частью арсенала современной медицины.

VIII . Методы генетики соматических клеток

С помощью этих методов изучают наследственность и изменчивость соматических клеток, что в значительной мере компенсирует невозможность применения к человеку гибридологического метода.

Культуры соматических клеток человека получают из материала биопсий (периферическая кровь, кожа, опухолевая ткань, ткань эмбриона, клетки из околоплодной жидкости).

В генетике человека используют следующие четыре метода.

1. Простое культивирование - клетки пригодны для цитогенетических, биохимических, иммунологических и др. исследований.

2. Клонирование - получение потомков одной клетки. Дает возможность проводить в генетически идентичных клетках биохимический анализ наследственно обусловленных процессов.

3. Селекция соматических клеток с помощью искусственных сред используется для отбора мутантных клеток с некоторыми свойствами, отбор гибридных клеток. Метод широко используется для изучения генных мутаций (механизмы, спонтанная и индуцируемая частота).

4. Гибридизация соматических клеток основана на слиянии совместно культивируемых клеток разных типов. При введении в культуру клеток РНК-сод. Вируса Сендай инактивированного при облучении ультрафиолетом - частота гибридизации значительно повышается. Гетерокарионы -2 ядра разных клеток в одной цитоплазме. После митоза образуются две одноядерные клетки - синкарионы - настоящая гибридная клетка, содержащая хромосомы обеих исходных клеток. В дальнейшем происходит постепенное удаление хромосом того организма, клетки которого имеют более медленный темп размножения.

Утрата хромосом носит случайный характер и поэтому среди большого числа гибридов всегда можно найти клетку, сохранившую какую-нибудь одну хромосому человека.

Используя подходящую селективную систему, можно отобрать клетки с определенной ферментативной активностью и локализовать ген этого фермента на конкретной хромосоме.

Метод используется для изучения проблемы сцепления и локализации генов.

Можно изучать механизмы первичного действия и взаимодействия генов, регуляцию генной активности. Метод позволяет широко изучать патогенез наследственных болезней на биохимическом и клеточном уровне.

IX . Создание моделей наследственных болезней человека с помощью трансгенных

животных.

Биологическое моделирование наследственных болезней представляет собой большой раздел экспериментальных биологии и генетики. Принцип биологического моделирования генных мутаций основан на законе гомологичных рядов в наследственной изменчивости, открытом Н.И.Вавиловым. У животных встречаются мутации, вызывающие такой же патологический эффект, как и у человека (мыши, кролики, собаки, хомяки, мыши). Среди наследственных аномалий у животных встречаются такие заболевания как, гемофилия, ахондроплазия, мышечная дистрофия, сахарный диабет и многие другие, составляющие основу наследственной патологии человека.

Методы основаны на введении чужеродных генов в клетки зародышей.

Как и всякая модель мутантные линии трансгенных животных не могут полностью воспроизвести наследственное заболевание, поэтому моделируются какие-то определенные фрагменты с целью изучения первичного механизма действия генов, патогенеза заболевания разработки принципов его лечения.