Изотопы примеры. Изотопы

Определенного элемента, имеющие одинаковый , но разные . Обладают ядрами с одинаковым числом и разл. числом , имеют одинаковое строение электронных оболочек и занимают одно и то же место в периодич. системе хим. элементов. Термин "изотопы" предложен в 1910 Ф. Содди для обозначения химически неразличимых разновидностей , отличающихся по своим физ. (прежде всего радиоактивным) св-вам. Стабильные изотопы впервые обнаружены в 1913 Дж. Томсоном с помощью разработанного им т. наз. метода парабол - прообраза совр. . Он установил, что у Ne имеется, по крайней мере, 2 разновидности с маc. ч. 20 и 22. Названиями и символами изотопов обычно служат названия и символы соответствующих хим. элементов; указывают сверху слева от символа. Напр., для обозначения прир. изотопов используют запись 35 Сl и 37 С1; иногда внизу слева указывают также элемента, т.е. пишут 35 17 Сl и 37 17 Cl. Только изотопы самого легкого элемента -водорода с маc. ч. 1, 2 и 3 имеют спец. названия и символы: (1 1 Н), (D, или 2 1 Н) и (Т, или 3 1 H) соответственно. Из-за большой разницы в массах поведение этих изотопов существенно различается (см. , ). Стабильные изотопы встречаются у всех четных и большинства нечетных элементов с [ 83. Число стабильных изотопов у элементов с четными номерами м. б. равно 10 (напр., у ); у элементов с нечетными номерами не более двух стабильных изотопов. Известно ок. 280 стабильных и более 2000 радиоактивных изотопов у 116 природных и искусственно полученных элементов. Для каждого элемента содержание отдельных изотопов в прир. смеси претерпевает небольшие колебания, к-рыми часто можно пренебречь. Более значит. колебания изотопного состава наблюдаются для метеоритов и др. небесных тел. Постоянство изотопного состава приводит к постоянству встречающихся на Земле элементов, представляющей собой среднее значение массы данного элемента, найденное с учетом распространенности изотопов в природе. Колебания изотопного состава легких элементов связаны, как правило, с изменением изотопного состава при разл. процессах, протекающих в природе ( , и т.п.). Для тяжелого элемента Рb колебания изотопного состава разных образцов объясняются разл. содержанием в , и др. источниках и - родоначальников естеств. . Различия св-в изотопов данного элемента наз. . Важной практич. задачей является получение из прир. смесей отдельных изотопов -

Повторите основные положения темы «Основные понятия химии» и решите предложенные задачи. Используйте №№6-17.

Основные положения

1. Вещество (простое и сложное) – это любая совокупность атомов и молекул, находящаяся в определённом агрегатном состоянии.

Превращения веществ, сопровождающиеся изменением их состава и (или) строения, называется химическими реакциями .

2. Структурные единицы вещества :

· Атом – наименьшая элекронейтральная частица химического элемента и простого вещества, обладающая всеми его химическими свойствами и далее физически и химически неделимая.

· Молекула – наименьшая электронейтральная частица вещества, обладающая всеми его химическими свойствами, физически неделимая, но делимая химически.

3. Химический элемент – это вид атомов с определённым зарядом ядра.

4. Состав атома :

Частица

Как определить?

Заряд

Масса

Кл

условные единицы

а.е.м.

Электрон

По порядковому

Номеру (N)

1.6 ∙ 10 -19

9.10 ∙ 10 -28

0.00055

Протон

По порядковому

номеру (N)

1.6 ∙ 10 -19

1.67 ∙ 10 -24

1.00728

Нейтрон

Ar – N

1.67 ∙ 10 -24

1.00866

5. Состав атомного ядра :

· В состав ядра входят элементарные частицы (нуклоны ) –

протоны (1 1 p ) и нейтроны (1 0 n ).

· Т.к. практически вся масса атома сосредоточена в ядре и m p m n ≈ 1 а.е.м , то округлённое значение A r химического элемента равно общему числу нуклонов в ядре.

7. Изотопы – разновидность атомов одного и того же химического элемента, отличающиеся друг от друга только своей массой.

· Обозначение изотопов: слева от символа элемента указывают массовое число (вверху) и порядковый номер элемента (внизу)

· Почему у изотопов разная масса?

Задание: Определите атомный состав изотопов хлора: 35 17 Cl и 37 17 Cl ?

· Изотопы имеют разную массу из-за различного числа нейтронов в их ядрах.

8. В природе химические элементы существуют в виде смесей изотопов.

Изотопный состав одного и того же химического элемента выражают в атомных долях (ω ат.) , которые указывают какую часть составляет число атомов данного изотопа от общего числа атомов всех изотопов данного элемента, принятого за единицу или 100%.

Например:

ω ат (35 17 Cl ) = 0,754

ω ат (37 17 Cl ) = 0,246

9. В таблице Менделеева приведены средние значения относительных атомных масс химических элементов с учётом их изотопного состава. Поэтому A r , указанные в таблице являются дробными.

A r ср = ω ат.(1) Ar (1) + … + ω ат.( n ) Ar ( n )

Например:

A r ср (Cl ) = 0,754 ∙ 35 + 0,246 ∙ 37 = 35,453

10. Задача для решения:

№1. Определите относительную атомную массу бора, если известно, что молярная доля изотопа 10 В составляет – 19,6 %, а изотопа 11 В – 80,4 %.

11. Массы атомов и молекул очень малы. В настоящее время в физике и химии принята единая система измерения.

1 а.е.м. = m (а.е.м.) = 1/12 m (12 C ) = 1,66057 ∙ 10 -27 кг = 1,66057 ∙ 10 -24 г .

Абсолютные массы некоторых атомов:

m ( C ) =1,99268 ∙ 10 -23 г

m ( H ) =1,67375 ∙ 10 -24 г

m ( O ) =2,656812 ∙ 10 -23 г

A r – показывает, во сколько раз данный атом тяжелее 1/12 части атома 12 С. M r ∙ 1,66 ∙ 10 -27 кг

13. Число атомов и молекул в обычных образцах веществ очень велико, поэтому при характеристике количества вещества используют единицу измерения – моль .

· Моль (ν) – единица количества вещества, которое содержит столько же частиц (молекул, атомов, ионов, электронов), сколько атомов содержится в 12 г изотопа 12 C

· Масса 1 атома 12 C равна 12 а.е.м., поэтому число атомов в 12 г изотопа 12 C равно:

N A = 12 г / 12 ∙ 1,66057 ∙ 10 -24 г = 6,0221 ∙ 10 23

· Физическая величина N A называется постоянной Авогадро (число Авогадро) и имеет размерность[ N A ] = моль -1 .

14. Основные формулы:

M = M r = ρ ∙ V m (ρ – плотность; V m – объём при н.у.)

Задачи для самостоятельного решения

№1. Вычислите число атомов азота в 100г карбоната аммония, содержащего 10% неазотистых примесей.

№2. При нормальных условиях 12 л газовой смеси, состоящей из аммиака и углекислого газа, имеют массу 18 г. Сколько литров каждого из газов содержит смесь?

№3. При действии избытка соляной кислоты на 8,24 г смеси оксида марганца (IV ) с неизвестным оксидом МО 2 , который не реагирует с соляной кислотой, получено 1,344 л газа при н.у. Входе другого опыта установлено, что мольное отношение оксида марганца (IV ) к неизвестному оксиду равно 3:1. Установите формулу неизвестного оксида и вычислите его массовую долю в смеси.

Изотопы

ИЗОТО́ПЫ -ов; мн. (ед. изото́п, -а; м.). [от греч. isos - равный и topos - место] Спец. Разновидности одного и того же химического элемента, различающиеся массой атомов. Радиоактивные изотопы. Изотопы урана.

Изото́пный, -ая, -ое. И. индикатор.

изото́пы

История исследований
Первые экспериментальные данные о существовании изотопов были получены в 1906-10 гг. при изучении свойств радиоактивных превращений атомов тяжелых элементов. В 1906-07 гг. было обнаружено, что продукт радиоактивного распада урана - ионий и продукт радиоактивного распада тория - радиоторий имеют те же химические свойства, что и торий, однако отличаются от последнего атомной массой и характеристиками радиоактивного распада. Более того: все три элемента имеют одинаковые оптические и рентгеновские спектры. По предложению английского ученого Ф. Содди (см. СОДДИ Фредерик) , такие вещества стали называть изотопами.
После того как изотопы были обнаружены у тяжелых радиоактивных элементов, начались поиски изотопов у стабильных элементов. Независимое подтверждение существования стабильных изотопов химических элементов было получено в экспериментах Дж. Дж. Томсона (см. ТОМСОН Джозеф Джон) и Ф. Астона (см. АСТОН Фрэнсис Уильям) . Томсон в 1913 г. обнаружил стабильные изотопы у неона. Астон, проводивший исследования с помощью сконструированного им прибора, названного масс-спектрографом (или масс-спектрометром), используя метод масс-спектрометрии (см. МАСС-СПЕКТРОМЕТРИЯ) , доказал, что и многие другие стабильные химические элементы имеют изотопы. В 1919 г. он получил доказательства существования двух изотопов 20 Ne и 22 Ne, относительное содержание (распространенность) которых в природе составляет приблизительно 91% и 9% . В дальнейшем был обнаружен изотоп 21 Ne с распространенностью 0,26%, изотопы хлора, ртути и ряда других элементов.
Масс-спектрометр несколько другой конструкции в те же годы был создан А. Дж. Демпстером (см. ДЕМПСТЕР Артур Джефри) . В результате последующего использования и усовершенствования масс-спектрометров усилиями многих исследователей была составлена почти полная таблица изотопных составов. В 1932 г. был открыт нейтрон - частица, не имеющая заряда, с массой, близкой к массе ядра атома водорода - протона, и создана протонно-нейтронная модель ядра. В результате в науке установилось окончательное определение понятия изотопов: изотопы - это вещества, ядра атомов которых состоят из одинакового числа протонов и отличаются лишь числом нейтронов в ядре. Примерно к 1940 г. изотопный анализ был проведен для всех известных к тому времени химических элементов.
При изучении радиоактивности было открыто около 40 природных радиоактивных веществ. Они были объединены в радиоактивные семейства, родоначальниками которых являются изотопы тория и урана. К природным относятся все стабильные разновидности атомов (их около 280) и все естественно радиоактивные, входящие в состав радиоактивных семейств (их 46). Все остальные изотопы получены в результате ядерных реакций.
Впервые в 1934 г. И. Кюри (см. ЖОЛИО-КЮРИ Ирен) и Ф. Жолио-Кюри (см. ЖОЛИО-КЮРИ Фредерик) получили искусственным путем радиоактивные изотоп азота (13 N), кремния (28 Si) и фосфора (30 P), отсутствующие в природе. Этими экспериментами они продемонстрировали возможность синтеза новых радиоактивных нуклидов. Среди известных в настоящее время искусственных радиоизотопов более 150 принадлежат трансурановым элементам (см. ТРАНСУРАНОВЫЕ ЭЛЕМЕНТЫ) , не встречающимся на Земле. Теоретически допускается, что число разновидностей изотопов, способных к существованию, может достигать порядка 6000.


Энциклопедический словарь . 2009 .

  • изотопов разделение
  • изотермический процесс

Смотреть что такое "изотопы" в других словарях:

    ИЗОТОПЫ Современная энциклопедия

    Изотопы - (от изо... и греческого topos место), разновидности химических элементов, у которых ядра атомов (нуклидов) отличаются числом нейтронов, но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе химических … Иллюстрированный энциклопедический словарь

    ИЗОТОПЫ - (от изо... и греч. topos место) разновидности химических элементов, у которых ядра атомов отличаются числом нейтронов, но содержат одинаковое число протонов и поэтому занимают одно и то же место в периодической системе элементов. Различают… … Большой Энциклопедический словарь

    ИЗОТОПЫ - ИЗОТОПЫ, хим. элементы, расположенные в одной и той же клетке периодической системы и следовательно обладающие одинаковым атомным номером или порядко вым числом. При этом И. не должны, вообще говоря, обладать одинаковым атомным весом. Различные… … Большая медицинская энциклопедия

    ИЗОТОПЫ - разновидности данного хим. элемента, различающиеся по массе ядер. Обладая одинаковыми зарядами ядер Z, но различаясь числом нейтронов, И. имеют одинаковое строение электронных оболочек, т. е. очень близкие хим. св ва, и занимают одно и то же… … Физическая энциклопедия

    изотопы - атомы одного и того же хим. элемента, ядра которых содержат одинаковое число протонов, но различное число нейтронов; имеют разные атомные массы, обладают одними и теми же хим. свойствами, но различаются по своим физ. свойствам, в частности… … Словарь микробиологии

    ИЗОТОПЫ - атомы хим. элемента, обладающие разными массовыми числами, но имеющие одинаковый заряд атомных ядер и поэтому занимающие одно место в периодической системе Менделеева. Атомы разных изотопов одного и того же хим. элемента отличаются по числу… … Геологическая энциклопедия

    Изотопы - Isotopes нуклиды, имеющие одинаковый атомный номер, но различные атомные массы (например, уран 235 и уран 238). Термины атомной энергетики. Концерн Росэнергоатом, 2010 … Термины атомной энергетики

    ИЗОТОПЫ - (от изо... и греч. topos место), элементы с одинаковым порядковым номером, но с разной атомной массой. Большинство радиоактивных изотопов, важных для экологии, обладают энергией от 0,1 до 5 Мэв (чем выше энергия радиоактивных изотопов, тем больше … Экологический словарь

    изотопы - Нуклиды, имеющие одинаковый атомный номер, но различные атомные массы (например, уран 235 и уран 238). Тематики атомная энергетика в целом EN isotopes … Справочник технического переводчика

    ИЗОТОПЫ - разновидности атомов данного хим. элемента, ядра которых содержат одинаковое число протонов, но различное число нейтронов. И. имеют разные атомные (см.) и одинаковое число электронов в атомной оболочке, что определяет их очень близкие физ. хим.… … Большая политехническая энциклопедия

При изучении свойств радиоактивных элементов было обнаружено, что у одного и того же химического элемента можно встретить атомы с различной массой ядра. Заряд ядра при этом они имеют одинаковый, то есть это не примеси сторонних веществ, а то же самое вещество.

Что такое и почему существуют изотопы

В периодической системе Менделеева и данный элемент, и атомы вещества с отличающейся массой ядра занимают одну клетку. Исходя из вышеперечисленного таким разновидностям одного и того же вещества было дано название «изотопы» (от греческого isos – одинаковый и topos – место). Итак, изотопы – это разновидности данного химического элемента, различающиеся по массе атомных ядер.

По принятой нейтронно-протонной модели ядра объяснить существование изотопов удалось следующим образом: ядра некоторых атомов вещества содержат различное количество нейтронов, но одинаковое количество протонов. В самом деле, заряд ядра изотопов одного элемента одинаков, следовательно, количество протонов в ядре одинаково. Ядра различаются по массе, соответственно, они содержат разное количество нейтронов.

Стабильные и нестабильные изотопы

Изотопы бывают стабильными и нестабильными. На сегодняшний день известно около 270 стабильных изотопов и более 2000 нестабильных. Стабильные изотопы – это разновидности химических элементов, которые могут самостоятельно существовать продолжительное время.

Большая часть нестабильных изотопов была получена искусственным путем. Нестабильные изотопы радиоактивны , их ядра подвержены процессу радиоактивного распада, то есть самопроизвольному превращению в другие ядра, сопровождающемуся испусканием частиц и/или излучений. Практически все радиоактивные искусственные изотопы имеют очень маленькие периоды полураспада, измеряемые секундами и даже долями секунд.

Сколько изотопов может содержать ядро

Ядро не может содержать произвольное количество нейтронов. Соответственно, количество изотопов ограниченно. У четных по количеству протонов элементов количество стабильных изотопов может достигать десяти. Например, олово имеет 10 изотопов, ксенон – 9, ртуть – 7 и так далее.

Те элементы, количество протонов которых нечетно , могут иметь лишь по два стабильных изотопа. У ряда элементов имеется только один стабильный изотоп. Это такие вещества как золото, алюминий, фосфор, натрий, марганец и другие. Такие вариации по числу стабильных изотопов у разных элементов связано со сложной зависимостью числа протонов и нейтронов от энергии связи ядра.

Практически все вещества в природе существуют в виде смеси изотопов. Количество изотопов в составе вещества зависит от вида вещества, атомной массы и количества стабильных изотопов данного химического элемента.

Содержание статьи

ИЗОТОПЫ –разновидности одного и того же химического элемента, близкие по своим физико-химическим свойствам, но имеющие разную атомную массу. Название «изотопы» было предложено в 1912 английским радиохимиком Фредериком Содди , который образовал его из двух греческих слов: isos – одинаковый и topos – место. Изотопы занимают одно и то же место в клетке периодической системы элементов Менделеева.

Атом любого химического элемента состоит из положительно заряженного ядра и окружающего его облака отрицательно заряженных электронов. Положение химического элемента в периодической системе Менделеева (его порядковый номер) определяется зарядом ядра его атомов. Изотопами называются поэтому разновидности одного и того же химического элемента, атомы которых имеют одинаковый заряд ядра (и, следовательно, практически одинаковые электронные оболочки), но отличаются значениями массы ядра. По образному выражению Ф.Содди, атомы изотопов одинаковы «снаружи», но различны «внутри».

В 1932 был открыт нейтрончастица, не имеющая заряда, с массой, близкой к массе ядра атома водорода – протона, и создана протонно-нейтронная модель ядра. В результате в науке установилось окончательное современное определение понятия изотопов: изотопы – это вещества, ядра атомов которых состоят из одинакового числа протонов и отличаются лишь числом нейтронов в ядре. Каждый изотоп принято обозначать набором символов , где X – символ химического элемента, Z – заряд ядра атома (число протонов), А – массовое число изотопа (общее число нуклонов – протонов и нейтронов в ядре, A = Z + N). Поскольку заряд ядра оказывается однозначно связанным с символом химического элемента, часто для сокращения используется просто обозначение A X.

Из всех известных нам изотопов только изотопы водорода имеют собственные названия. Так, изотопы 2 H и 3 H носят названия дейтерия и трития и получили обозначения соответственно D и T (изотоп 1 H называют иногда протием).

В природе встречаются как стабильные изотопы, так и нестабильные – радиоактивные, ядра атомов которых подвержены самопроизвольному превращению в другие ядра с испусканием различных частиц (или процессам так называемого радиоактивного распада). Сейчас известно около 270 стабильных изотопов, причем стабильные изотопы встречаются только у элементов с атомным номером Z Ј 83. Число нестабильных изотопов превышает 2000, подавляющее большинство их получено искусственным путем в результате осуществления различных ядерных реакций. Число радиоактивных изотопов у многих элементов очень велико и может превышать два десятка. Число стабильных изотопов существенно меньше, Некоторые химические элементы состоят лишь из одного стабильного изотопа (бериллий, фтор, натрий, алюминий, фосфор, марганец, золото и ряд других элементов). Наибольшее число стабильных изотопов – 10 обнаружено у олова, у железа, например, их – 4, у ртути – 7.

Открытие изотопов, историческая справка.

В 1808 английский ученый натуралист Джон Дальтон впервые ввел определение химического элемента как вещества, состоящего из атомов одного вида. В 1869 химиком Д.И.Менделеевым была открыт периодический закон химических элементов. Одна из трудностей в обосновании понятия элемента как вещества, занимающего определенное место в клетке периодической системы, заключалась в наблюдаемой на опыте нецелочисленности атомных весов элементов. В 1866 английский физик и химик – сэр Вильям Крукс выдвинул гипотезу, что каждый природный химический элемент представляет собой некоторую смесь веществ, одинаковых по своим свойствам, но имеющих разные атомные масс, однако в то время такое предположение не имело еще экспериментального подтверждения и поэтому прошло мало замеченным.

Важным шагом на пути к открытию изотопов стало обнаружение явления радиоактивности и сформулированная Эрнстом Резерфордом и Фредериком Содди гипотеза радиоактивного распада:радиоактивность есть не что иное, как распад атома на заряженную частицу и атом другого элемента, по своим химическим свойствам отличающийся от исходного. В результате возникло представление о радиоактивных рядах или радиоактивных семействах, в начале которых есть первый материнский элемент, являющийся радиоактивным, и в конце – последний стабильный элемент. Анализ цепочек превращений показал, что в их ходе в одной клеточке периодической системы могут оказываться одни и те же радиоактивные элементы, отличающиеся лишь атомными массами. Фактически это и означало введение понятия изотопов.

Независимое подтверждение существования стабильных изотопов химических элементов было затем получено в экспериментах Дж. Дж. Томсона и Астона в 1912–1920 с пучками положительно заряженных частиц (или так называемых каналовых лучей) , выходящих из разрядной трубки.

В 1919 Астон сконструировал прибор, названный масс-спектрографом (или масс-спектрометром). В качестве источника ионов по-прежнему использовалась разрядная трубка, однако Астон нашел способ, при котором последовательное отклонение пучка частиц в электрическом и магнитном полях приводило к фокусировке частиц с одинаковым значением отношения заряда к массе (независимо от их скорости) в одной и той же точке на экране. Наряду с Астоном масс-спектрометр несколько другой конструкции в те же годы был создан американцем Демпстером. В результате последующего использования и усовершенствования масс-спектрометров усилиями многих исследователей к 1935 году была составлена почти полная таблица изотопных составов всех известных к тому времени химических элементов.

Методы разделения изотопов.

Для изучения свойств изотопов и особенно для их применения в научных и прикладных целях требуется их получение в более или менее заметных количествах. В обычных масс-спектрометрах достигается практически полное разделение изотопов, однако количество их ничтожно мало. Поэтому усилия ученых и инженеров были направлены на поиски других возможных методов разделения изотопов. В первую очередь были освоены физико-химические методы разделения, основанные на различиях в таких свойствах изотопов одного итого же элемента, как скорости испарения, константы равновесия, скорости химических реакций и т.п. Наиболее эффективными среди них оказались методы ректификации и изотопного обмена, которые нашли широкое применение в промышленном производстве изотопов легких элементов: водорода, лития, бора, углерода, кислорода и азота.

Другую группу методов образуют так называемые молекулярно-кинетические методы: газовая диффузия, термодиффузия, масс-диффузия (диффузия в потоке пара), центрифугирование. Методы газовой диффузии, основанные на различной скорости диффузии изотопных компонентов в высокодисперсных пористых средах, были использованы в годы второй мировой войны при организации промышленного производства разделения изотопов урана в США в рамках так называемого Манхэттенского проекта по созданию атомной бомбы. Для получения необходимых количеств урана, обогащенного до 90% легким изотопом 235 U – главной «горючей» составляющей атомной бомбы, были построены заводы, занимавшие площади около четырех тысяч гектар. На создание атомного центра с заводами для получения обогащенного урана было ассигновано более 2-х млрд. долл. После войны в СССР были разработать и построены заводы по производству обогащенного урана для военных целей, также основанные на диффузионном методе разделения. В последние годы этот метод уступил место более эффективному и менее затратному методу центрифугирования. В этом методе эффект разделения изотопной смеси достигается за счет различного действия центробежных сил на компоненты изотопной смеси, заполняющей ротор центрифуги, который представляет собой тонкостенный и ограниченный сверху и снизу цилиндр, вращающийся с очень высокой скоростью в вакуумной камере. Сотни тысяч соединенных в каскады центрифуг, ротор каждой из которых совершает более тысячи оборотов в секунду, используются в настоящее время на современных разделительных производствах как в России, так и в других развитых странах мира. Центрифуги используются не только для получения обогащенного урана, необходимого для обеспечения работы ядерных реакторов атомных электростанций, но и для производства изотопов примерно тридцати химических элементов средней части периодической системы. Для разделения различных изотопов используются также установки электромагнитного разделения с мощными источниками ионов, в последние годы получили распространение также лазерные методы разделения.

Применение изотопов.

Разнообразные изотопы химических элементов находят широкое применение в научных исследованиях, в различных областях промышленности и сельского хозяйства, в ядерной энергетике, современной биологии и медицине, в исследованиях окружающей среды и других областях. В научных исследованиях (например, в химическом анализе) требуются, как правило, небольшие количества редких изотопов различных элементов, исчисляемые граммами и даже миллиграммами в год. Вместе с тем, для ряда изотопов, широко используемых в ядерной энергетике, медицине и других отраслях, потребность в их производстве может составлять многие килограммы и даже тонны. Так, в связи с использованием тяжелой воды D 2 O в ядерных реакторах ее общемировое производство к началу 1990-х прошлого века составляло около 5000 т в год. Входящий в состав тяжелой воды изотоп водорода дейтерий, концентрация которого в природной смеси водорода составляет всего 0,015%, наряду с тритием станет в будущем, по мнению ученых, основным компонентом топлива энергетических термоядерных реакторов, работающих на основе реакций ядерного синтеза. В этом случае потребность в производстве изотопов водорода окажется огромной.

В научных исследованиях стабильные и радиоактивные изотопы широко применяются в качестве изотопных индикаторов (меток) при изучении самых различных процессов, происходящих в природе.

В сельском хозяйстве изотопы («меченые» атомы) применяются, например, для изучения процессов фотосинтеза, усвояемости удобрений и для определения эффективности использования растениями азота, фосфора, калия, микроэлементов и др. веществ.

Изотопные технологии находят широкое применение в медицине. Так в США, согласно статистическим данным, проводится более 36 тыс. медицинских процедур в день и около 100 млн. лабораторных тестов с использованием изотопов. Наиболее распространены процедуры, связанные с компьютерной томографией. Изотоп углерода C 13 , обогащенный до 99% (природное содержание около 1%), активно используется в так называемом «диагностическом контроле дыхания». Суть теста очень проста. Обогащенный изотоп вводится в пищу пациента и после участия в процессе обмена веществ в различных органах тела выделяется в виде выдыхаемого пациентом углекислого газа СО 2 , который собирается и анализируется с помощью спектрометра. Различие в скоростях процессов, связанных с выделением различных количеств углекислого газа, помеченных изотопом С 13 , позволяют судить о состоянии различных органов пациента. В США число пациентов, которые будут проходить этот тест, оценивается в 5 млн. человек в год. Сейчас для производства высоко обогащенного изотопа С 13 в промышленных масштабах используются лазерные методы разделения.

Владимир Жданов