Влияние температуры на скорость реакции Правило Вант-Гоффа. Задачи с использованием закона вант-гоффа Правило ван гоффа скорость реакции

Повышение температуры ускоряет большинство химических реакций. Согласно правилу Вант-Гоффа при повышении температуры на 10 К скорость многих реакций увеличивается в 2-4 раза

v 2 и v 1 скорости реакций при температурах Т2 и Т1 , Y коэффициент, значение которого для эндотермической реакции выше, чем для экзотермической реакции. Для многих реакций Y лежит в пределах 2-4.

Уравнение (7.26) можно использовать лишь для ориентировочных расчётов, так как их точность не очень высока.

Уравнение Аррениуса.

(7.27)

k - константа скорости реакции

k - предэкспоненциальный множитель

e - основание натурального логарифма

E - постоянная, называемая энергией активации, определяемая природой реакции. Значения Ea для химических реакций лежат в пределах 40-400 кДж/моль.

Если при изменении температуры концентрация реагентаостаёся постоянной, то зависимость скорости реакции от температуры описываеться уравнением:

Где Ea =0, Vo=V

Уравнение (7.27) можно представить в виде

(7.28)

Графическое изображение уравнения (7.28б) приведено на рис 7.2.

(рис 7.2 зависимость логарифма константы скорости от обратной температуры по уравнению аррениуса)

Как видно из уравнения (7.28б) и рис (7.2)

Уравнение Аррениуса озволяет проводить более точные расчеты изменения скорости реакции с увеличением температуры, чем уравнение (7.26). Приведём уравнение Аррениуса для двух температур:

Вычитая из второго уравнения первое, получаем

(7.29а)

(7.29б)

Аналогичное уравнение можно вывести и из скоростей реакции:

(7.30)

Из уравнений (7.26) и (7.29) следует, что
и
.

Итак, константа скорости реакции (а при постоянных концентрациях и скороть реакции) возрастает с увеличением температуры по экспоненциальному закону. В соответсвии с уравнением Аррениуса константа скорости реакции уменьшаеться с ростом энергии активации. Из уравнения Аррениуса также следуе, что чем выше энергия активации, тем выше градиент скорости реакции по температуре. Уравнение Аррениуса позволяет рассчитывать константы скорости (и скорости) реакции при различных температурах.

Энергия активации

В ходе химической реакции разрушаются одни и возникают другие молекулы и соединения, происходит изменение химических связей, т.е. перераспределение электронной плотности. Если бы старые химические связи в ходе реакции сразу полностью разрушались, то на это потребовалось бы большое количество энергии и реакция протекала крайне медленно. Как показали исследования, в ходе реакции система проходит через переходное однородное состояние через образование, так называемого, активированного комплекса.

Например: AB+DC=AD+BC можно представить как:

+ -> . . -> | |

D-C C…D D C

исх в-во акт.комп. прод. р-ии

В активированном комплексе старые связи еще не разрушены, но ослаблены, новые связи наметились, но не образованны. В результате образуется либо новое вещество, либо исходное. Система в переходном состоянии имеет более высокую энергию, чем в исходном и конечном состояниях.

(рис 7.3) энерг. диаграмма хода реакции

Энергия необходимая для перехода вещества в состояние активного комплекса - энергия активации.

Возможность образования активированного комплекса, а соответственно и химического взаимодействия определяется энергией молекул. Как видно из рис 7.4, с увеличением температуры растет и доля молекул способных к активным столкновениям с образованием активированного комплекса, т.е. происходит ускорение реакции.

(рис 7.4) Кинетическая энергия молекул

Экзотермические реакции протекают с меньшей энергией активации, чем эндотермические (см. рис. 7.3.). Высокая энергия активации является причиной того, что многие химические реакции при не высоких температурах не протекают, хотя возможны (
). Так в обычных условиях не горит бумага, уголь и т.д., хотя энергия Гиббса реакций окисления <0 (
).

Раздел химии, изучающий реакции в низкотемпературной плазме, получил название плазмохимии, а изучающий химические реакции в сверхнизких температурах - криптохимии.

Итак, энергия активации - это энергия необходимая для перехода частиц в состояние активированного комплекса. С ростом температуры растёт доля этих частиц и скорость реакции. С увеличением энергии активации уменьшается доля активных молекул и скорость реакции.

Вант-Гоффа правило

Правило Вант-Гоффа - эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °С до 100 °С). Я.Х. Вант-Гофф на основании множества экспериментов сформулировал следующее правило: При повышении температуры на каждые 10 градусов константа скорости гомогенной элементарной реакции увеличивается в два - четыре раза . Уравнение, которое описывает это правило следующее:

V 2 = V 1 * Y (T 2 − T 1) / 10

где V2-скорость реакции при данной температуре(T2), V1-скорость реакции при температуре T1, Y-температурный коэффициент реакции (если он равен 2, например, то скорость реакции будет увеличиватся в 2 раза при повышении температуры на 10 градусов).

Следует помнить, что правило Вант-Гоффа ограниченную область применимости. Ему не подчиняются многие реакции, например реакции, происходящие при высоких температурах, очень быстрые и очень медленные реакции. Правилу Вант-Гоффа также не подчиняются реакции, в которых принимают участие громоздкие молекулы, например белки в биологических системах. Температурную зависимость скорости реакции более корректно описывает уравнение Аррениуса .

Из уравнения Вант-Гоффа температурный коэффициент вычисляется по формуле:

Y = (V 2 / V 1) 10 / (T 2 − T 1)


Wikimedia Foundation . 2010 .

Смотреть что такое "Вант-Гоффа правило" в других словарях:

    Вант-Гоффа правило - ЭМБРИОЛОГИЯ ЖИВОТНЫХ ВАНТ ГОФФА ПРАВИЛО – изменение температуры (если оно не выходит за определенные для каждого вида животного рамки нормальных температур) не приводит к качественным изменениям в развитии, а лишь сказывается на темпе дробления … Общая эмбриология: Терминологический словарь

    Приближённое правило, согласно которому при повышении температуры на 10°С скорость химической реакции увеличивается примерно в 2 4 раза. Найдено Я. Х. Вант Гоффом. См. Кинетика химическая … Большая советская энциклопедия

    Правило Вант Гоффа эмпирическое правило, позволяющее в первом приближении оценить влияние температуры на скорость химической реакции в небольшом температурном интервале (обычно от 0 °C до 100 °C). Я. Х. Вант Гофф на… … Википедия

    Правило, сформулированное Вант Гоффом и дополненное Аррениусом, которое в биологической модификации гласит, что скорость обмена веществ организмов при повышении температуры на 10° может быть повышена в 2 3 раза. Экологический энциклопедический… … Экологический словарь

    правило Вант-Гоффа - Правило Вант Гоффа: при повышении температуры на каждые 10° скорость большинства химических реакций увеличивается в 2 4 раза. Общая химия: учебник / А. В. Жолнин … Химические термины

    правило Вант-Гоффа

    правило Вант-Гоффа - van’t Hofo taisyklė statusas T sritis Standartizacija ir metrologija apibrėžtis Teiginys, kuriuo teigiama, kad padidinus temperatūrą 10 laipsnių reakcijos sparta padidėja nuo 2 iki 4 kartų. atitikmenys: angl. van’t Hoff law; van’t Hoff rule vok.… … Penkiakalbis aiškinamasis metrologijos terminų žodynas

    правило Вант-Гоффа - van t Hofo taisyklė statusas T sritis chemija apibrėžtis Pakėlus temperatūrą 10 laipsnių reakcijos greitis padidėja 2–4 kartus. atitikmenys: angl. van t Hoff law; van t Hoff rule rus. правило Вант Гоффа … Chemijos terminų aiškinamasis žodynas

    закон Вант-Гоффа - van’t Hofo dėsnis statusas T sritis fizika atitikmenys: angl. Van’t Hoff law vok. Van’t Hoffsche Regel, f; Van’t Hoffsches Gesetz, m rus. закон Вант Гоффа, m; правило Вант Гоффа, m pranc. loi de Van’t Hoff, f … Fizikos terminų žodynas

    ПРАВИЛО - (1) буравчика определяет направление вектора напряжённости магнитного поля прямолинейного проводника с постоянным током. Если буравчик ввёртывается по направлению тока, то направление его вращения определяет направление магнитных силовых линий… … Большая политехническая энциклопедия

приближённое правило, согласно которому при повышении температуры на 10°С скорость химической реакции увеличивается примерно в 2-4 раза. Найдено Я. Х. Вант-Гоффом. См. Кинетика химическая.

  • - правило, сформулированное Вант-Гоффом и дополненное Аррениусом, которое в биологической модификации гласит, что скорость обмена веществ организмов при повышении температуры на 10° может быть...

    Экологический словарь

  • - показатель, обозначаемый «i», увеличения числа частиц растворённого вещества вследствие диссоциации молекулы на ионы: i= 1 +α, где α - степень диссоциации, k - число молекул ионов, образованных при диссоциации...

    Энциклопедический словарь по металлургии

  • - деревянные кружки, привязывающиеся к вантам. Через отверстия, имеющиеся у этих кружков, проходят снасти бегучего такелажа и тем самым предохраняются от трения о ванты...

    Морской словарь

  • - Якоб Хендрик, нидерландский химик, один из основателей стереохимии, физической химии. Сформулировал теорию пространственного расположения атомов в молекулах...

    Современная энциклопедия

  • - Го́ффа, Хоффа Альберт, немецкий хирург, ортопед. Автор руководств по ортопедической хирургии, переломам и вывихам, технике массажа, кинезотерапии, атласа ортопедических повязок и бандажей...

    Большой энциклопедический словарь

  • - "...вант: гибкий несущий элемент моста вантово-балочной системы, передающий усилия с балки жесткости на пилон..." Источник: " СП 35.13330.2011. Свод правил. Мосты и трубы. Актуализированная редакция СНиП 2.05...

    Официальная терминология

  • - нидерландский ученый; род. в 1852 г. в Роттердаме; учился в Дельфте, Лейдене, Бонне, Париже и Утрехте, был сперва профессором в Утрехте, потом в Амстердаме, а затем приглашен в Берлин...
  • - хирург-ортопед; род. в 1859 г.; с 1897 г. профессор Вюрцбургского университета...

    Энциклопедический словарь Брокгауза и Евфрона

  • - хирург-ортопед, род. в 1859 г., с 1897 г. профес...

    Энциклопедический словарь Брокгауза и Евфрона

  • - Якоб Хендрик, голландский химик, один из основателей современной физической химии и стереохимии. В 1871 окончил Политехническую школу в Делфте, после чего работал в Лейдене, Бонне и Париже...
  • - осмотического давления, определяет давление молекул растворённого вещества на полупроницаемую перепонку, отделяющую раствор от чистого растворителя и непроницаемую для растворённого вещества...

    Большая Советская энциклопедия

  • - ...

    Орфографический словарь-справочник

  • - Вант-Г"офф, -а: зак"он Вант-Г"...

    Русский орфографический словарь

  • - ВАНТ * vente f. Продажа. Он <Золя> выделяет их них <покупателей> три-четыре лица: одну графиню.. кумушку из провинции, являющуюся на каждую новую vente. Набл. 1883 12 1 224...

    Исторический словарь галлицизмов русского языка

  • - китайский титул, соотв. нашему «князь»...
  • - Деревянные блоки на купеческих кораблях, привязываемые к вантам...

    Словарь иностранных слов русского языка

"Вант-Гоффа правило" в книгах

Вант-Гофф Якоб Хендрик (1852-1911) Нидерландский физико-химик

Из книги Великие открытия и люди автора Мартьянова Людмила Михайловна

Вант-Гофф Якоб Хендрик (1852-1911) Нидерландский физико-химик Якоб Хендрик Вант-Гофф родился 30 августа 1852 года в Роттердаме (Нидерланды) в семье врача и знатока Шекспира Якоба Хендрика Вант-Гоффа и Алиды Якобы Колф третьим из семи детей. Он мечтал о карьере химика. Однако

Правило 13: Создавай открытое пространство. "Правило двух секунд"

Из книги 70 Правил Защитного Вождения автора Шаллер Роберт

Правило 13: Создавай открытое пространство. "Правило двух секунд" Обеспечивай собственную безопасность, активно создавая открытое пространство вокруг машины. Не позволяй им ограничивать твою свободу передвижения. Обилие свободного пространства дает лишнее время и

ЯКОБ ГЕНРИК ВАНТ-ГОФФ (1852–1911)

Из книги Великие химики. В 2-х т. Т. 2 автора Манолов Калоян

ЯКОБ ГЕНРИК ВАНТ-ГОФФ (1852–1911) Был теплый воскресный день, один из тех ясных весенних дней, которым так радуются после длинной, уже надоевшей зимы. Почки на деревьях набухали буквально на глазах, краски в саду волшебно менялись. Еще утром парк был серым и неприветливым,

ЯКОБ ВАНТ-ГОФФ

Из книги 100 великих нобелевских лауреатов автора Мусский Сергей Анатольевич

ЯКОБ ВАНТ-ГОФФ (1852- 1911)Вант- Гофф получил первую Нобелевскую премию по химии за открытие законов химической динамики и осмотического давления. Этой высокой наградой была отмечена важность молодой области науки -физической химии.Ученый, пользовавшийся всеобщим

Вант-Гофф Якоб Хендрик

БСЭ

Вант-Гоффа закон

Из книги Большая Советская Энциклопедия (ВА) автора БСЭ

Вант-Гоффа правило

Из книги Большая Советская Энциклопедия (ВА) автора БСЭ

Правило, як правило, як звичайно, як водиться, як заведено

Из книги Як ми говоримо автора Антоненко-Давидович Борис Дмитрович

Болезнь Гоффа

Из книги Большой справочник по массажу автора Васичкин Владимир Иванович

Болезнь Гоффа

Из книги Массаж. Уроки великого мастера автора Васичкин Владимир Иванович

Болезнь Гоффа Гиперплазия жировой ткани под наколенником характеризуется небольшой болью при движениях, болезненностью при пальпации, припухлостью по сторонам связки надколенника. Чаще это заболевание наблюдается у спортсменов. В последующем жировая ткань заменяется

Правило первого въезда и правило основной страны

Из книги Как объехать всю Европу за 300 евро автора Ризо Елена

Правило первого въезда и правило основной страны Сколько бы мнений по поводу так называемого правила первого въезда ни существовало, при путешествии по странам Шенгенской зоны все же стоит обратить внимание на некоторые серьезные ограничения.Итак, получив шенгенскую

автора Лопухин Александр

9. А говорят: "кого хочет он учить ведению? и кого вразумлять проповедью? отнятых от грудного молока, отлученных от сосцов матери? 10. Ибо все заповедь на заповедь, заповедь на заповедь, правило на правило, правило на правило, тут немного и там немного". На обличения Исаии

Из книги Толковая Библия. Том 5 автора Лопухин Александр

13. И стало у них словом Господа: заповедь на заповедь, заповедь на заповедь, правило на правило, правило на правило, тут немного, там немного, - так что они пойдут, и упадут навзничь, и разобьются, и попадут в сеть и будут уловлены. Словом Господа - правильнее: "со словом

Правило 100. Находите новое правило каждый день. Или хотя бы ищите его

Из книги Правила жизни [Как добиться успеха и стать счастливым] автора Темплар Ричард

Правило 100. Находите новое правило каждый день. Или хотя бы ищите его Вот мы и познакомились с 99 правилами успешной жизни. Наконец-то. Однако не думайте, что это все. Нет времени сидеть сложа руки; для того, кто принимает эти правила, нет перерывов на кофе. Как только вы

20. Типы фаз в металлических сплавах. Правило фаз; правило рычага

Из книги Материаловедение. Шпаргалка автора Буслаева Елена Михайловна

20. Типы фаз в металлических сплавах. Правило фаз; правило рычага Диаграмма состояния – это графическое изображение состояния любого сплава изучаемой системы в зависимости от его концентрации и температуры.Изучение любого сплава начинается с построения и анализа

Свойства растворов, которые зависят только от концентрации частиц в растворе и не зависят от природы растворенного вещества, называются коллигативными.

Растворы, образованные частицами строго одинакового размера, между которыми действуют примерно одинаковые силы межмолекулярного взаимодействия, не происходит химического взаимодействия, изменения температуры и объема называются идеальными. К идеальным растворам стремятся очень разбавленные растворы.

К коллигативным свойствам растворов относятся:

· давление насыщенного пара растворителя над раствором;

· температура замерзания (кристаллизации) раствора;

· температура кипения раствора;

· осмотическое давление.

Коллигативные свойства разбавленных растворов могут быть описаны количественно и выражены в виде законов.

При данной температуре давление насыщенного пара над каждой жидкостью – величина постоянная. При растворении в жидкости какого-либо вещества это давление понижается. Закон Рауля (1887г): относительное понижение давления насыщенного пара растворителя над раствором равно мольной доле растворённого вещества:

N= (P о - P) / P о,

где N - мольная доля растворённого вещества; P 0 - давление насыщенного пара растворителя над чистым растворителем (кПа), P - давление насыщенного пара растворителя над раствором (кПа).

Рауль установил, что разбавленные растворы имеют более высокую температуру кипения по сравнению с температурой кипения чистого растворителя и более низкую температуру замерзания по сравнению с температурой замерзания чистого растворителя.

Понижение температуры (Δt зам) замерзания раствора:

Δt зам = K·C m ,

где К - криоскопическая постоянная растворителя, C m

t зам(р-ра) = t зам(р-ля) - Δt зам

Криоскопия - метод исследования жидких растворов нелетучих веществ, основанный на измерении понижения температуры замерзания раствора по сравнению с температурой замерзания чистого растворителя.

Повышение температуры кипения (Δt кип) раствора:

Δt кип = E·C m ,

где Е - эбуллиоскопическая постоянная растворителя, C m - моляльная концентрация раствора.

t кип(р-ра) = t кип(р-ля) + Δt кип

Эбуллиоскопия - метод изучения жидких растворов нелетучих веществ, основанный на измерении повышения температуры кипения раствора по сравнению с температурой кипения чистого растворителя.

Криоскопическая постоянная К и эбуллиоскопическая постоянная Е – табличные величины, для воды К(Н 2 О)=1,86кг∙К/моль, Е(Н 2 О)=0,52 кг∙К/моль.

Диффузия – самопроизвольный процесс перемещения вещества, приводящий к выравниванию его концентрации. При диффузии частицы растворителя и растворенного вещества диффундируют в противоположных направлениях, поэтому является встречным, двусторонним процессом. Односторонняя диффузия растворителя в раствор через полупроницаемую перегородку называется осмосом. Объём раствора в результате осмоса увеличивается, при этом возникает давление на стенки сосуда, в котором находится раствор. Это давление называется осмотическим (P осм, кПа). Закон Вант-Гоффа:


P осм = С м ·R·T,

где С м – молярная концентрация, R – универсальная газовая постоянная (8,31 Дж/моль∙К), T – температура, К.

С М =m 1 /М 1 ∙V, тогда P осм =m 1 R·T/М 1 ∙V

Однако водные растворы электролитов (солей, кислот, оснований) не подчиняются законам Рауля и Вант-Гоффа - они имеют более повышенные точки кипения и более пониженные точки замерзания, завышенное осмотическое давление, чем следует из расчетов по соответствующим формулам. Примером может служить 0,1М раствор хлористого натрия. Расчетное понижение температуры замерзания этого раствора по формуле Рауля должно быть равно 0,186°С, а определенное опытным путем оказалось равным 0,34° С, т. е. опытная величина превышает расчетную почти в два раза.

Для того чтобы свойства растворов электролитов удовлетворительно описывались законами Вант-Гоффа и Рауля, в соответствующие расчетные формулы был введен поправочный коэффициент i, так называемый изотонический коэффициент или коэффициент Вант-Гоффа.

Если для неэлектролитов: P осм = C М ∙R∙T, Δtзам = K∙Cm, Δtкип = Е∙Cm, то для растворов электролитов: P осм = i∙C М ∙R∙T, Δtзам = i∙K∙Cm, Δtкип = i∙Е∙Cm

Изотонический коэффициент показывает, во сколько раз реальное число частиц растворенного вещества больше, чем теоретически ожидаемое (если предполагать, что вещество в растворе присутствует только в виде молекул). Для идеальных растворов электролитов i >1.

Между изотоническим коэффициентом i и степенью диссоциации α существует определенная связь:

1+α(n -1) или α=(i-1)/(n-1),

где n - число ионов, на которые распадается при диссоциации молекула электролита (для KCl n=2, для ВаС1 2 и Na 2 SO 4 n=3 и т. д.).

Изотонические растворы – имеют равное осмотическое давление. Гипертонические растворы – имеют большее осмотическое давление по сравнению с другим раствором. Гипотонические растворы – имеют меньшее осмотическое давление по сравнению с другим раствором.

Осмотическое давление биологических жидкостей в различных организмах неодинаково, так осмотическое давление у лягушек несколько ниже, чем у человека, а у некоторых морских животных, обитающих в воде со значительным содержанием солей оно выше. Известно, что в тканях растений, всасывающих воду из почвы, осмотическое давление достигает 5-20 атм, а у некоторых растений пустынь и солончаков - даже 170 атм (1 атм=101,3кПа).

При повышении температуры скорость большинства химических реакций существенно увеличивается, причем для гомогенных реакций при нагревании на каждые десять градусов скорость реакции возрастает в 2-4 раза.

Общее число частиц в системе (N) равно площади под кривой. Общее число частиц с энергией большей, чем Еа - равно заштрихованной площади.

Из рисунка 2 видно, что при увеличении температуры распределение частиц по энергии меняется так, что увеличивается доля частиц с более высокой энергией. Таким образом важным понятием для химической реакции является энергия активации.

Энергию активации - это энергия которой должны обладать частицы, чтобы взаимодействие их привело к химической реакции. Энергия активации выражается в кДж/моль. Для реакций, протекающих с заметной скоростью, энергия активации не превышает 50кДж/моль (для реакций ионного обмена Ea » 0); если Ea > 100 кДж/моль, то скорость реакции неизмеримо мала.

В 1889 г. С.Аррениус привел уравнение зависимости константу скорости химической реакции от температуры:


k = Ae - Ea/RT

где, A - предэкспотенциальный множитель, зависящий от природы реагирующих веществ;

R - газовая постоянная = 8,314 Дж/(моль? К);

Ea - энергия активации.

Из уравнения Аррениуса следует, что чем выше энергия активации, тем в большей степени необходимо повышать температуру для поддержания необходимой скорости реакции.

На рисунке 3 показана зависимость изменения потенциальной энергии реагирующей системы от пути протекания реакции. Из приведенного рисунка видно, что для экзотермической реакции (идущей с выделением теплоты) убыль активных молекул восполняется за счет энергии, выделяющейся в ходе реакции. В случае эндотермической реакции для поддержания необходимой скорости реакции требуется подвод тепла.

Экзотермическая реакция Эндотермическая реакция

Рисунок 10.3 Энергетическая диаграмма химической реакции

А - реагенты, С - продукты.

2.4 Влияние посторонних веществ

Посторонние вещества в зависимости от оказываемого воздействия могут ускорять реакции - катализаторы или замедлять - ингибиторы.

Катализаторы - это вещества ускоряющие химические реакции, но сами после реакции остаются в неизменном виде.

Ингибиторы - это вещества замедляющие реакцию.На практике иногда необходимо замедлять реакции (коррозия металлов и др.) это достигается введением в реакционную систему ингибиторов. Например, нитрит натрия, хромата и дихромата калия снижают скорость коррозии металлов.

Промоторы - вещества, повышающие активность катализатора. При этом промоторы могут сами и не обладать каталитическими свойствами.

Каталитические яды - посторонние примеси в реакционной смеси, приводящие к частичной или полной потере активности катализатора. Так, следы мышьяка, фосфора вызывают быструю потерю активности катализатором V 2 O 5 при контактном способе получения H 2 SO 4 .

3. Химическое равновесие

В химических реакциях исходные вещества не всегда полностью превращаются в продукты реакции. Это происходит потому, что по мере накопления продуктов реакции могут создаваться условия для протекания обратной реакции. Большинство химических реакций являются обратимыми.

В качестве примера проанализируем крайне важную для промышленности обратимую реакцию синтеза аммиака из азота и водорода:

прямая реакция - 2N 2 + 3H 2 → 2NH 3 ,

обратная реакция - 2NH 3 → N 2 + 3H 2 ,

обратимая реакция - 2N 2 + 3H 2 « 2NH 3 .

Прямая и обратная реакции являются отдельными реакциями с соответствующими им кинетическими уравнениями, предэкспотециальными множителями, энергиями активаций и т.д

Важной количественной характеристикой обратимых реакций является константа равновесия, которая определяется при достижении системой химического равновесия - состояния при котором скорости прямой и обратной реакций равны. Примеры применения закона действующих масс (з.д.м.).

Выведем константу равновесия на примере реакции синтеза аммиака.

Кинетическое уравнение прямой реакции

N 2 +3H 2 → 2NH 3

имеет вид Vпр = Кпр 3 .

Кинетическое уравнение обратной реакции

2NH 3 → N 2 + 3H 2

имеет вид Vобр = Кобр 2 .

В состоянии химического равновесия Vпр = Vобр.

Подставляя в условие химического равновесия выражения скоростей прямой и обратной реакций получаем следующее равенство Кпр 3 = Кобр 2 .

После преобразования получаем

.

4. Принцип Ле-Шателье

Если на систему, находящуюся в состоянии химического равновесия, оказывается какое-либо внешнее воздействие, то равновесие в результате протекающих в системе процессов сместится таким образом, что оказанное воздействие уменьшится.

4.1 Влияние изменения концентраций на равновесие

При увеличении концентрации какого-либо из веществ, участвующих в реакции, равновесие смещается в сторону расходования этого вещества, а при её уменьшении - в сторону образования этого вещества.

Пример 1. Если в равновесную систему

2N 2 + 3H 2 « 2NH 3

добавить N 2 или H 2 , то в соответствии с принципом Ле-Шателье для уменьшения концентраций данных веществ, равновесие должно сместится вправо, выход NH 3 увеличится. При увеличении концентрации NH 3 равновесие соответственно сместится влево.

4.2 Влияние изменения давления на равновесие

Давление в замкнутой реакционной системе обусловлено наличием в ней газообразных веществ: чем их больше, тем больше давление. Поэтому изменение внешнего давления повлияет на равновесие только в тех случаях, когда в нем участвуют газообразные вещества, причем количество их в прямой и обратной реакциях разное.

Если в системе, находящейся в состоянии химического равновесия увеличить давление, то преимущественно будет протекать реакция, в результате которой уменьшается количество газообразных веществ; при уменьшении давления преимущественно протекает реакция, в результате которой увеличивается количество газообразных продуктов.

Пример 1. Можно ли изменением давления увеличить выход продуктов в реакцииCO 2 (г) + H 2 (г) « CO(г) + H 2 O(г).

Решение: Реакционная смесь включает газообразные реагенты, но количество их в реакции не меняется: из одного моля CO 2 (г) и одного моля H2(г) получаются по одному молю CO(г) и H 2 O(г). По этой причине изменение давления на состояние равновесия не влияет.

Пример 2. Как изменятся равновесные концентрации реагентов при увеличении давления в системе N 2 + 3H 2 « 2NH 3 ?

Из уравнения реакции видно, что из 4 моль газа исходных продуктов образуется 2 моль газа продуктов реакции. Таким образом при увеличении давления равновесие сместится прямой реакции, так как она приводит к уменьшению давления.

4.3 Влияние изменения температуры на химическое равновесие

Большинство химических реакций протекают с выделением или поглощением тепла. В первом случае температура смеси увеличивается, во втором - уменьшается.

Если реакционную смесь, находящуюся в состоянии химического равновесия, нагреть, то в соответствии с принципом Ле Шателье должна протекать преимущественно реакция, в результате которой тепло будет поглощаться, т.е. эндотермическая реакция; при охлаждении смеси должна протекать преимущественно реакция, в результате которой тепло будет выделяться, т.е. эндотермическая реакция.

Если в системе, находящейся в состоянии химического равновесия, увеличить температуру, то равновесие смещается в сторону эндотермической реакции, а при понижении температуры - в сторону экзотермической реакции.

Пример: 2N 2 + 3H 2 « 2NH 3 , H0 = - 92 кДж

Реакция экзотермическая, поэтому при увеличении температуры равновесие сдвигается влево, а при понижении температуры - вправо.

Из этого следует, что для увеличения выхода аммиака температуру необходимо понижать. На практике выдерживают температуру 500 0С, так как при более низкой температуре резко снижается скорость прямой реакции.

Химическое равновесие имеет динамический характер: прямая и обратная реакции при равновесии не прекращаются.

Константа равновесия зависит от температуры и природы реагирующих веществ. Чем больше константа равновесия, тем больше равновесие сдвинуто в сторону образования продуктов прямой реакции

Принцип Ле Шателье универсален, так как применим не только к чисто химическим процессам, но и к физико-химическим явлениям, таким, как кристаллизация, растворение, кипение, фазовые превращения в твердых телах.